
Welcome to the Xceed Zip Compression Library v4.0

The Xceed Zip Compression Library is a high-performance data compression library for
Windows developers. It provides your applications with the capability to create and
manipulate industry-standard zip files as well as compress and decompress strings and
buffers directly in memory.

This 4th generation Xceed Zip Compression Library is designed to offer the ultimate in flexibility while
being the easiest to use product of its kind. It allows most data compression tasks to be accomplished with
only a few lines of code. Xceed Zip is ideal for zipping or unzipping files on demand, compressing
database fields, preparing files for transmission, automating backups, and compressing your application's
data files.
The fully self-contained ActiveX control at the core of the library is all you need to include with your
projects. The component has the latest generation zip compression engine built-in, and has no external
dependencies such as MFC DLLS, runtime libraries or other resources. That translates to minimal hassle at
distribution time. The library also supports all the available ActiveX functionality designed to make your
programming job easier, such as categorized properties, built-in constants and enumerations, context-
sensitive F1-help, optional parameters and built-in help strings.
Written entirely with threadsafe code and supporting both the single-threaded and multi-threaded
appartment models, this edition of the library has very low memory requirements and is perfectly suited for
use in environments running multiple zip/unzip operations simultaneously. It is at home on Active Server
Pages, can run in the background, and can be dynamically instantiated for formless use.
The library comes with support for most of today's 32-bit development languages, including Visual Basic,
Visual C++, Delphi, C++Builder, Office 97 suite products, Visual FoxPro, Visual Objects and more. Xceed
Zip provides you with carefully designed properties, methods and events that make development as close
to intuitive as currently possible. For those times when you're not sure, pressing F1 on any keyword will
pop-up our world class help documentation. The goal: We want you to spend the least amount of time
fiddling with the compression portion of your application.
We invite you to download the fully functional free trial version of the library and start integrating Xceed Zip
into one of your existing programs right away. All you really have to do is add the control to a form, set one
or two properties, and off you go! Get it at http://www.xceedsoft.com.
All Xceed products include comprehensive online documentation, free expert technical support, royalty-
free distribution and a 60-day money-back guarantee. If you're not satisfied for any reason, return the
product for a full refund of the purchase price.
Xceed is devoted to the development and support of the Xceed Zip Compression Library and is
determined to pursue its evolution. That's a promise we have kept since the library's introduction in 1995.
Visit our web site at www.xceedsoft.com for up-to-date information on upgrades, add-on modules for
Xceed Zip and other new Xceed developer tools.

Features of the Xceed Zip Compression Library

ActiveX technology

· A single fully self-contained COM object and ActiveX control written with ATL 3.0
· Requires no external compression DLLs, MFC DLLs or runtime libraries
· Both single-threaded (STA) and multi-threaded apartment (MTA) model design
· Instantiate the component dynamically without putting it on a form
· Supports multiple instances running simultaneously
· Supports both Unicode and Ansi in one single control. The library automatically uses Unicode API calls for

best performance when running on Windows NT.
· ActiveX control interface has all constants, enumerations and types built-in. Code completion, property

categories, help strings and context-sensitive F1-help fully supported
· Works with all 32-bit development environments that can use ActiveX controls, including VB, VC++, Delphi,

C++ Builder, VFP, Office, PB, VO, Web scripting languages, ASP and DCOM projects

Zip compression and decompression engine

· Ultra fast, low memory usage compression engine
· 100% compatible with the existing PKZip 2.04g format
· Regular, spanned and self-extracting zip files created by Xceed Zip can be used by any of today's existing

unzipping applications, and vice-versa
· Stores and retrieves the latest zip file format extensions, allowing Unicode filenames and NT file attributes,

extra time stamps and security permissions to be stored in the zip file
· No need to repair corrupted zip files. Xceed Zip automatically tries to recover from errors and reports any

inconsistencies found in the zip file while unzipping

Major operations

· Zip files or memory buffers into new or existing zip files
· Unzip files to disk or directly to memory
· Compress and decompress strings or buffers completely in memory
· All compression and decompression modes support streaming and encryption
· Create fully customized self-extracting zip files with the optional Self-Extractor Module
· Convert existing zip files into self-extracting zip files
· Reads and writes zip files that span multiple disks
· Reads and writes multi-part zip files directly to hard drive
· Optional background processing so your code can continue execution while Xceed Zip is working

Application-component interactivity

· All operations can be aborted at any time
· Provides status report events on a file-by-file basis as well as on the entire operation being performed, with

various percentages, byte and file counts. Easily add any kind of progress bar to your application.
· Events are triggered whenever a file is being zipped, unzipped, updated, deleted, etc.
· Notifies your application when and why a specific file cannot be processed.
· Notifies your application when a file being zipped or unzipped is about to overwrite an existing file. Your

application can then choose to overwrite it or skip it. You can also rename files.
· Provides complete file information for the current file being processed.
· Your application receives info such as a file's achieved compression ratio, compressed size and other info

as it becomes available.
· Informs your application that it should prompt the user to insert a specific disk reading or writing zip files

that span multiple disks.

Flexibility features

· Process or exclude files based on file attributes, sizes, version resources and dates – or create your own
custom include/exclude filters

· File previewing - find out exactly which files will match your wildcards and filters before you start zipping or
unzipping. You can also obtain the compressed file sizes before starting the actual zipping operation.
Statistics on the entire group of files previewed are also provided.

Zip file manipulation functionality

· Obtain global information on a zip file
· Obtain a detailed list of a zip file's contents
· Delete files from within a zip file
· Test the integrity of a zip file and its contents
· Add and retrieve comments for individual files in the zip file
· Get and set the global zip file comment
· Automatic full yield so other applications do not halt during processing.
· Clear disks before writing the zip file to them
· Compress entire directories and their contents
· Process only files newer than those already in the zip file or existing on disk
· Provide global encryption and decryption passwords or on a file-by-file basis
· Control which types of files are stored in the zip file without compression
· Control what path information is stored in the zip file for each file
· Store a drive's volume label in the zip file and restore it during unzipping
· Zip up system and hidden files, overwrite read-only files
· Allow zipping files that are currently open for write operations by other process
· Limit operation to files with timestamps and file sizes within specified ranges
· Supports long filenames, UNC paths and stores Unicode filenames in the zip file
· Manipulate self-extracting zip files without disturbing their self-extracting ability
· Rename files and their paths as they are being zipped or unzipped
· Control the amount of compression applied to files being zipped
· Specify the path where files will be uncompressed to
· Specify files to process using wildcards
· Work on temporary copies of zip files, for maximum safety.
· Specify the location of where temp files are created

Features of the Xceed Zip Self-Extractor Module

Major operations

· Create new self-extracting zip files or transform already existing zip files into self-extracting zip files.
· Select either 16-bit self-extracting zip files that work on all Windows 3.x, Windows 95, 98 and NT operating

systems, or 32-bit self-extracting zip files that support long filenames and work on Windows 95, 98 and NT.
· Create self-extracting zip files that span multiple disks.
· Customize the self-extracting zip files using properties built into the Xceed Zip Compression Library

components, or use configuration files.

Customization features

· Introduction message and dialog box titles are customizable.
· Display a custom license agreement with configurable accept and refuse buttons.
· Customize all other messages, prompts and button captions too.
· Customize the self-extracting zip file's application icon.
· Customizable default unzipping folder.

User interaction

· Display a confirmation dialog that allows users to select an alternate unzipping folder.
· Display a password dialog box whenever an encrypted file is encountered. The user can enter the

decryption password or skip the file if they don't have the password for the file.
· Display a text file after successfully unzipping files.
· Customizable overwrite behavior with dialog box offering the user various overwrite options.
· Display a detailed status dialog during extraction.
· Any on-screen messages and dialogs can be shut off for quiet operation.

Other features

· Create self-extracting zip files with a built-in decryption password. This prevents users from using unzipping
programs to unzip the files, and therefore forces users to view your custom introduction, license agreement
or warning messages.

· Create program groups and insert items into program groups.
· Associate filename extensions with applications.
· Execute an application or open a document using its associated application after successfully unzipping

files. Optional command-line parameters can also be specified.
· InstallMode feature allows 3rd-party install or setup programs (and their data files) to be unzipped into a

temporary folder, executed, and then deleted upon completion.
· Many customized paths, filenames, strings and prompts are parsed, allowing you to insert strings such as

the current folder, windows and windows system directories, the temporary folder, and more.

What's new since version 3.5

Every aspect of the library was completely revised. Interface, compression engine, features, flexibility and this
documentation. To be more precise, this is a completely different library altogether. The interface has been
improved, and we have added the following new capabilities that were not available in Xceed Zip v3.5:

· Brand new zip and unzip compression engine that uses very little memory and runs faster.
· The entire library was written with multi-threading in mind, and is designed to efficiently run multiple zipping

and unzipping operations simultaneously.
· The library now consist of a single, fully self-contained COM object and ActiveX control. For those of you

who care about these things, it was written with ATL 3.0 in Visual C++ 6.0, fully beta tested and processed
with, among other tools, Numega's BoundsChecker (for memory and resource leaks and API calling
accuracy), TrueCoverage (to make sure every line of code has been tested) and TrueTime for optimization.

· Requires no external DLLs. No MFC.
· Both single threaded (STA) and multi-threaded apartment (MTA) model.
· Instantiate the control dynamically without putting it on a form.
· Supports multiple instances running simultaneously.
· Both UNICODE and ANSI supported in the same control
· Detects when running on Windows NT and uses UNICODE API calls for faster operation
· ActiveX control interface has all constants, enumerations and types built-in. Code completion, property

categories, help strings and context-sensitive F1-help fully supported.
· Stores/Retrieves NT file attributes and security permissions in the zip file.
· Powerful, flexible file to memory and memory to file zipping/unzipping with streaming support.
· Memory-only compression with streaming and encryption.
· Create multi-part zip files directly to hard drive.
· Process or exclude files based on file attributes, sizes, version resource and dates. Create your own

custom include/exclude filters.
· File previewing - find out exactly which files will match your wildcards before you start zipping or unzipping.

Get statistics on these files too.
· Obtain compressed sizes before starting the zipping operation.
· No need to repair corrupted zip files. Xceed Zip automatically tries to recover, and reports any

inconsistencies found in the zip file while unzipping.
· Automatic disk spanning. No need to set a property indicating what kind of zip file you'll be unzipping.
· Can unzip spanned zip files without first inserting the last disk.
· Works with all 32-bit development environments that can use ActiveX controls, including VB, VC++, Delphi,

C++ Builder, VFP, Office, PB, VO, Web scripting languages, ASP and DCOM projects.

About the free trial version

The free trial version of the Xceed Zip Compression Library v4.0 includes everything the registered version does,
except that it does not allow you to distribute applications you create that were created using the trial version of
the library. That means you get the complete Windows help manual with examples, sample applications with fully
commented source codes, free technical support by email or telephone and the Xceed Zip Self-Extractor
Module.
The trial version allows you to design, code and test applications that use Xceed Zip – as long as you don't try to
distribute them to other machines. Only registered users are permitted to distribute applications that use the free
trial version.
When you have decided that you like the product and will use it, all you have to do after you have purchased a
registered copy is to install the registered package and recompile your application(s). You could wait until the last
minute before registering (because Xceed Software processes orders quickly and sends registered copies by
email) but you run the risk of either forgetting, running into delays with your purchasing department or being
delayed by other unforeseen problems.
Please see the How to order section for ordering information.

Zipping files

Basic zipping

To zip up files, perform the following 4 steps. Put the Xceed Zip control on a form, then:

· Specify the zip file to create or add files to. To do this, set the ZipFilename property.

· Specify the files you want to zip up. To do this, set the FilesToProcess property.

· Tell Xceed Zip to start zipping. To do this, call the Zip method.

· Make sure it worked successfully. To do this, check the Zip method's return value.

Here is sample code for these 4 steps:
' Don't forget to put an Xceed Zip control on a form
Dim ResultCode As xcdError
XceedZip1.ZipFilename = "c:\backups\My documents.zip"
XceedZip1.FilesToProcess = "c:\documents\word*.doc"
ResultCode = XceedZip1.Zip
If ResultCode = xerSuccess then
 MsgBox "Files zipped successfully."
Else
 MsgBox XceedZip1.GetErrorDescription(xvtError, ResultCode)
EndIf

Things you should consider

The main questions you should ask yourself when zipping files are:

· Do you want to store paths in the zip file? See the controlling how paths are stored topic.

· Do you want to zip up files in subfolders, too? See the ProcessSubfolders property.

· Do you want to display the status of the zipping operation? See the GlobalStatus event.

· Is there a chance the zip file may span multiple disks? If so, write a handler for the InsertDisk event.

Other questions you may want to consider are:

· Do you want to zip only certain types of files? See the filtering properties.

· Do you want to password-protect your zipped files? See the EncryptionPassword property.

· Do you want to edit a file's info before zipping? See the ZipPreprocessingFile event.

· Is there a chance you're zipping files already open? See the ZipOpenedFiles property.

· Are you looking for the best compression ratio? See the CompressionLevel property.

· Do you want to store Unicode filenames in the zip file? See the ExtraHeaders property.

If there's anything else you need to do that's not mentioned here, consult the Properties topic, or search the index
– chances are, Xceed Zip does what you need. If not, ask Xceed Software whether it is possible or not.

Unzipping files

Basic unzipping

To unzip files, perform the following 4 steps. Put the Xceed Zip control on a form, then:

· Specify the zip file to unzip files from. To do this, set the ZipFilename property.

· Specify where to unzip files to. To do this, set UnzipToFolder property.

· Tell Xceed Zip to start unzipping. To do this, call the Unzip method.

· Make sure it worked successfully. To do this, check the Unzip method's return value.

Here is sample code for these 4 steps:
' Don't forget to put an Xceed Zip control on a form
Dim ResultCode As xcdError
XceedZip1.ZipFilename = "c:\backups\My documents.zip"
XceedZip1.UnzipToFolder = "c:\documents\word"
ResultCode = XceedZip1.Unzip
If ResultCode = xerSuccess then
 MsgBox "Files unzipped successfully."
Else
 MsgBox XceedZip1.GetErrorDescription(xvtError, ResultCode)
EndIf

Things you should consider

The main questions you should ask yourself when unzipping files are:

· Do you want to unzip only some files, not all of them? See the FilesToProcess property.

· Do you want to recreate paths stored in the zip file? See the PreservePaths property.

· Do you want to display the status of the unzipping operation? See the GlobalStatus event.

· Are you possibly unzipping a spanned zip file? If so, write a handler for the InsertDisk event.

Other questions you may want to consider are:

· Do you want to unzip only certain types of files? See the filtering properties.

· Are the files you are unzipping password-protected? See the EncryptionPassword property.

· Do you want to edit a file's info before unzipping? See the UnzipPreprocessingFile property.

If there's anything else you need to do that's not mentioned here, consult the Properties topic, or search the index
– chances are, Xceed Zip does what you need. If not, ask Xceed Software whether it is possible or not.

Compression entirely in memory

Compression entirely in memory

To compress entirely in memory, from one memory buffer to another, use the Xceed Compression control's
Compress method. Keep in mind that this is a different control than the Xceed Zip control. To uncompress data
that has been compressed this way, use the Xceed Compression control's Uncompress method. The output of
the Compress method is always a byte array variant.

Here is an example for VB users:
' Don't forget to put an Xceed Compression control on a form
Dim CompressedData As Variant
Dim OriginalData As Variant
XceedCompression1.Compress "This is some text to compress", CompressedData,

True
XceedCompression1.Uncompress CompressedData, OriginalData, True
Debug.Print OriginalData

In the example above, the return values of the Compress and Uncompress methods were ignored. Also, an
encryption password was not used. However, you could add error checking and passwords, as in the following
example:

Dim CompressedData As Variant
Dim OriginalData As Variant
Dim ResultCode As xcdError
XceedCompression1.EncryptionPassword = "the password"
ResultCode = XceedCompression1.Compress("This is some text to compress",

CompressedData, True)
If ResultCode <> xceSuccess Then MsgBox "Error #" + Str(ResultCode) +
 " while compressing the data."
ResultCode = XceedCompression1.Uncompress(CompressedData, OriginalData, True)
If ResultCode <> xceSuccess Then MsgBox "Error #" + Str(ResultCode) +
 " while decompressing the data."
Debug.Print OriginalData

Listing the contents of a zip file

Basic listing

To list the contents of a zip file, perform the following 4 steps. Put the Xceed Zip control on a form, add a listbox
to the form if that's where you want to list files in, and then:

· Specify the zip file to list the contents of. To do this, set the ZipFilename property.

· Tell Xceed Zip to start listing. To do this, call the ListZipContents method.

· Obtain each filename and file info. To do this, write a handler for the ListingFile event.

· Make sure it worked successfully. To do this, check the ListZipContent method's return value.

Here is sample code for these 4 steps (excluding the code for the ListingFile event):
' Don't forget to put an Xceed Zip control on a form
Dim ResultCode As xcdError
XceedZip1.ZipFilename = "c:\backups\My documents.zip"
ResultCode = XceedZip1.ListZipContents
If ResultCode = xerSuccess then
 MsgBox "Files listed successfully."
Else
 MsgBox XceedZip1.GetErrorDescription(xvtError, ResultCode)
EndIf

Here is sample code to put into the ListingFile event handler. This sample assumes you want to put the listed
items in a listbox, and display only the filename and size:

ListBox1.AddItem sFilename + " size=" + Str(lCompressedSize)

Things you should consider

The main questions you should ask yourself when listing files are:

· What information do you need? The ListingFile event provides plenty of file information.

· Are you possibly listing a spanned zip file? If so, write a handler for the InsertDisk event.

· Do you want to display the status of the listing operation? See the GlobalStatus event.

Other questions you may want to consider are:

· Do you want to list only certain types of files? See the filtering properties.

If there's anything else you need to do that's not mentioned here, consult the Properties topic, or search the index
– chances are, Xceed Zip does what you need. If not, ask Xceed Software whether it is possible or not.

Installation instructions for Visual Basic 5.0

The Xceed Zip Compression Library setup utility will copy all the necessary files to your system and place the
XCEEDZIP.DLL in the Windows System folder and register it with the operating system. The only thing left to do is to
make the control available to your VB 5.0 projects. To do this, perform the following steps:

· Start Visual Basic 5.0.
· Create a new project or open an existing one.
· Select Components… from the Project menu.
· An entry named "Xceed Zip Compression Library v4.0" entry should appear in the components list.
· In the Components dialog, make sure the "Xceed Zip Compression Library v4.0" entry is checked in the

components list. This will make it available for use in your applications.
· Click the OK button. The Xceed Zip and Xceed Compression control icons should now appear in the

components toolbox.

If the control is not in the components list, perform the following steps:

· Try reinstalling the Xceed Zip Compression Library from its setup program. Continue only if that didn't help.
· Click the Browse… button.
· Find and select the XCEEDZIP.DLL file (use the one in the Windows System folder that was copied there by

the setup program) then click on the OK button.
· The "Xceed Zip Compression Library v4.0" entry should now appear in the components list.

Installation instructions for Visual Basic 6.0

The Xceed Zip Compression Library setup utility will copy all the necessary files to your system and place the
XCEEDZIP.DLL in the Windows System folder and register it with the operating system. The only thing left to do is to
make the control available to your VB 6.0 projects. To do this, perform the following steps:

· Start Visual Basic 6.0.
· Create a new project or open an existing one.
· Select Components… from the Project menu.
· An entry named "Xceed Zip Compression Library v4.0" entry should appear in the components list.
· In the Components dialog, make sure the "Xceed Zip Compression Library v4.0" entry is checked in the

components list. This will make it available for use in your applications.
· Click the OK button. The Xceed Zip and Xceed Compression control icons should now appear in the

components toolbox.

If the control is not in the components list, perform the following steps:

· Try reinstalling the Xceed Zip Compression Library from its setup program. Continue only if that didn't help.
· Click the Browse… button.
· Click on All files in the Files of type tab
· Find and select the XCEEDZIP.DLL file (use the one in the Windows System folder that was copied there by

the setup program) then click on the OK button.

The "Xceed Zip Compression Library v4.0" entry should now appear in the components list.

Installation instructions for Visual C++ 6.0 (MFC projects)

The Xceed Zip Compression Library setup utility will copy all the necessary files to your system and place the
XCEEDZIP.DLL in the Windows System folder and register it with the operating system. The only thing left to do is to
make the control available to your VC++ 6.0 projects. To do this, perform the following steps:

· Start Microsoft Visual C++ 6.0
· Open your MFC AppWizard application project, or create a new one by selecting the New... menu item from

the File menu, then selecting the Projects tab and choosing the MFC AppWizard item. Follow the Wizards
instructions to create the project. Be sure that you select the ActiveX Controls option for the question "What
other support would you like to include?"

· Select the Project menu
· Select the Add to project submenu, then select Components and Controls...
· In the Components and Controls Gallery dialog, look in the Registered ActiveX Controls folder for the

"Xceed Zip Control 4.0" or the "Xceed Compression control" entry, then select it and click on the Insert
button.

· Select the OK in response to the Insert this component? message box. The Confirm Classes dialog should
appear.

· Click OK to close the Confirm Classes dialog.
· Click the Close button to close the Components and Controls Gallery dialog.
· The XCEEDZIP.CPP and XCEEDZIP.H files should now be part of your project. You will now be able to

instantiate the Xceed Zip object in your project, and see the Xceed Zip icon available in your Controls
toolbar when designing dialog boxes.

Installation instructions for Word 97 and Excel 97

The Xceed Zip Compression Library setup utility will copy all the necessary files to your system and place the
XCEEDZIP.DLL in the Windows System folder and register it with the operating system. The only thing left to do is to
make the control available to your Word 97 projects. To do this, perform the following steps:

· Start Word 97 or Excel 97.
· Select the Visual Basic Editor option from the Macro submenu in the Tools menu or use the Alt+F11

shortcut.
· In the Microsoft Visual Basic window, select the References… option from the Tools Menu.
· Make sure the "Xceed Zip Compression Library v4.0" entry is checked and then click on the OK button.
· In the Microsoft Visual Basic window, select the UserForm option from the Insert menu.
· If the Toolbox window is not visible, select the ToolBox option from the View menu.
· Select the Additional Controls… option from the Tools menu.
· In the Additional Controls dialog, make sure "Xceed Zip Compression Library v4.0" is checked in the

Available Controls list.
· Click the OK button.

If there is no entry for Xceed Zip in the references dialog's list of available references:

· Try reinstalling the Xceed Zip Compression Library from its setup program. Continue only if that didn't help.
· Try reinstalling the Xceed Zip Compression Library from its setup program. Continue only if that didn't help.
· In the References dialog, click the Browse... button.
· Find and select the XCEEDZIP.DLL file (preferably the one in Windows System which was placed there by

the Xceed Zip setup program), then click on the Open button.
· The "Xceed Zip Compression Library v4.0" entry should now appear in the Available References listing in

the References dialog.

Installation instructions for Visual FoxPro 5.0 and 6.0

The Xceed Zip Compression Library setup utility will copy all the necessary files to your system and place the
XCEEDZIP.DLL in the Windows System folder and register it with the operating system. The only thing left to do is to
make the control available to your VFP 5.0 and 6.0 projects. To do this, perform the following steps:

· Start Visual FoxPro 5.0 or 6.0
· Select Options... from the Tools menu.
· Select the Controls tab from the Options dialog.
· Select the ActiveX controls checkbox.
· The Xceed Zip control should appear in the "selected:" listbox (still in the Controls tab of the Options dialog)
· Now, to make the control available to your Visual FoxPro 5.0 projects, make sure the checkbox next to the

"Xceed Zip Compression Library v4.0" entry is selected. Click on the OK button and the Xceed Zip icon
should now appear in the list of controls you can insert - for example, when using the OLE Container Object
on a form.

If the entry for Xceed Zip does not appear in the list of controls:

· Try reinstalling the Xceed Zip Compression Library from its setup program. Continue only if that didn't help.
· Select the Add... button from the Controls tab of the Options dialog.
· Find and select the XCEEDZIP.DLL file (preferably the one in the Windows System folder that was placed

there by the Xceed Zip setup program), then click on the OK button.
· The control's entry should now appear in the list.

Special note for Visual FoxPro 5.0 and 6.0: Xceed Zip events will be triggered only if you set
"Application.AutoYield = .F." Place this code in the section of your main program where you set up your
environment. If you only have a single form in your application that uses Xceed Zip, place "Application.AutoYield =
.F." in the forms load method, and set it back to the default in the forms destroy method.

Installation instructions for Access 97

The Xceed Zip Compression Library setup utility will copy all the necessary files to your system and place the
XCEEDZIP.DLL in the Windows System folder and register it with the operating system. The only thing left to do is to
make the control available to your VB 4.0 projects. To do this, perform the following steps:

· Start Access 97.
· Select the ActiveX Controls… option from the Tools menu
· The "Xceed Zip Compression Library v4.0" entry should appear in the Available Controls list of the ActiveX

Controls dialog.
· Click the Close button.

If the Xceed Zip entry does not appear in the list:

· Try reinstalling the Xceed Zip Compression Library from its setup program. Continue only if that didn't help.
· In the ActiveX Controls dialog, click the Register... button.
· Find and select the XCEEDZIP.DLL file (use the one in the Windows System folder that was copied there by

the setup program) then click on the Open button.
· The Xceed Zip control should now be available the "Available Controls" list.

Installation instructions for Delphi 3.0

The Xceed Zip Compression Library setup utility will copy all the necessary files to your system and place the
XCEEDZIP.DLL in the Windows System folder and register it with the operating system. The only thing left to do is to
make the control available in your Delphi 3.0 environment by inserting the control into the toolbar. To do this,
perform the following steps:

· Start Delphi 3.0
· Open an existing project or create a new project
· From the Component menu, select the Import ActiveX control item
· Select the "Xceed Zip Compression Library 4.0" item from the list of installed ActiveX controls (if the

component is not there, we recommend that you reinstall the library on your machine instead of choosing
the Add button and selecting the XCEEDZIP.DLL control from the Windows System directory)

· Click on the Install button that's on the Import ActiveX dialog
· The Install dialog will appear. Click on the "Into new package" tab.
· Enter a filename and path for the new package in the "File Name" field. It should be a ".DPK" file, and you'll

probably want to put it with your other package files in your Delphi installation folder.
· Click OK in the Install dialog
· Delphi will then ask you to confirm the rebuild – click Yes in the Confirm dialog.
· If everything was successful, you should get a message that the package has been updated and that the

new components have been registered.
· Close the package dialog
· Click Yes when you are prompted to confirm the changes.

You have now succesfully installed the Xceed Zip Compression Library v4.0 ActiveX control in Delphi 3. The
components should appear in your component toolbar (ActiveX or Xceed tabs).

Installation instructions for Delphi 4.0

The Xceed Zip Compression Library setup utility will copy all the necessary files to your system and place the
XCEEDZIP.DLL in the Windows System folder and register it with the operating system. The only thing left to do is to
make the control available in your Delphi 4.0 environment by inserting the control into the toolbar. To do this,
perform the following steps:

· Start Delphi 4.0
· Open an existing project or create a new project
· From the Component menu, select the Import ActiveX control item
· Select the "Xceed Zip Compression Library 4.0" item from the list of installed ActiveX controls (if the

component is not there, we recommend that you reinstall the library on your machine instead of choosing
the Add button and selecting the XCEEDZIP.DLL control from the Windows System directory)

· Click on the Install button that's on the Import ActiveX dialog
· The Install dialog will appear. Click on the "Into new package" tab.
· Enter a filename and path for the new package in the "File Name" field. It should be a ".DPK" file, and you'll

probably want to put it with your other package files in your Delphi installation folder.
· Click OK in the Install dialog
· Delphi will then ask you to confirm the rebuild – click Yes in the Confirm dialog.
· If everything was successful, you should get a message that the package has been updated and that the

new components have been registered.
· Close the package dialog
· Click Yes when you are prompted to confirm the changes.

You have now succesfully installed the Xceed Zip Compression Library v4.0 ActiveX control in Delphi 4. The
components should appear in your component toolbar (ActiveX or Xceed tabs).

Installation instructions for C++ Builder 3.0

The Xceed Zip Compression Library setup utility will copy all the necessary files to your system and place the
XCEEDZIP.DLL in the Windows System folder and register it with the operating system. The only thing left to do is to
make the control available in your C++ Builder 3.0 environment by inserting the control into the toolbar. To do this,
perform the following steps:

· Start C++ Builder 3.0
· Open an existing project or create a new project
· From the Component menu, select the Import ActiveX control item
· Select the "Xceed Zip Compression Library 4.0" item from the list of installed ActiveX controls (if the

component is not there, we recommend that you reinstall the library on your machine instead of choosing
the Add button and selecting the XCEEDZIP.DLL control from the Windows System directory)

· Click on the Install button that's on the Import ActiveX dialog
· The Install dialog will appear. Click on the "Into new package" tab.
· Enter a filename and path for the new package in the "File Name" field. It should be a ".BPK" file, and you'll

probably want to put it with your other package files in your C++ Builder installation folder
· Click OK in the install dialog
· If everything was successful, you should get a message that the package has been updated and that the

new components have been registered.
· Close the package dialog
· Click Yes when you are prompted to confirm the changes.

The components should now appear in the ActiveX tab of your component toolbar.

Installation instructions for C++ Builder 4.0

The Xceed Zip Compression Library setup utility will copy all the necessary files to your system and place the
XCEEDZIP.DLL in the Windows System folder and register it with the operating system. The only thing left to do is to
make the control available in your C++ Builder 4.0 environment by inserting the control into the toolbar. To do this,
perform the following steps:

· Start C++ Builder 4.0
· Open an existing project or create a new project
· From the Component menu, select the Import ActiveX control item
· Select the "Xceed Zip Compression Library 4.0" item from the list of installed ActiveX controls (if the

component is not there, we recommend that you reinstall the library on your machine instead of choosing
the Add button and selecting the XCEEDZIP.DLL control from the Windows System directory)

· Click on the Install button that's on the Import ActiveX dialog
· The Install dialog will appear. Click on the "Into new package" tab.
· Enter a filename and path for the new package in the "File Name" field. It should be a ".BPK" file, and you'll

probably want to put it with your other package files in your C++ Builder installation folder
· Click OK in the install dialog
· If everything was successful, you should get a message that the package has been updated and that the

new components have been registered.
· Close the package dialog
· Click Yes when you are prompted to confirm the changes.

The components should now appear in the ActiveX tab of your component toolbar.

Installation instructions for other 32-bit development environments

The Xceed Zip ActiveX control should be available in your languages list of available ActiveX controls. Normally,
the component (XCEEDZIP.DLL) is copied to the Windows System folder by the Xceed Zip setup program and then
"registered" with the operating system. Your language should automatically "see" the component. If it does not,
then you may need to manually register the control. Before doing this, though, we strongly suggest that you
reinstall your Xceed Zip Compression Library. This will ensure that it is licensed as well as being registered with
the operating system. If that doesn't solve the problem, here's how to manually register the control:

· From the Run option in the Windows 95 or Windows NT start menu, or from a command prompt, run the
following command to register an OCX:

regsvr32 "path and filename of the xceedzip.dll"
· You will then see a message box that either displays "LoadLibrary failed" or displays "LoadLibrary

succeeded". If you get the success message, then your ActiveX control is now registered on the machine
and is ready for use by applications or in your development environment.

Creating a new self-extracting zip file

Creating a self-extracting zip file directly from a group of files

The method for creating a self-extracting zip file is very similar to that of creating a regular zip file, except that
you must specify the self-extractor binary to use. You'll also want to (although it is optional) give your zip file a
".EXE" extention instead of the usual ".ZIP".

Here we'll follow the same steps as the zipping files topic, but modified for creating a self-extracting zip file. To
create a new self-extracing zip file, perform the following 5 steps. Put the Xceed Zip control on a form, then:

· Specify the zip file to create. Make it a ".EXE". To do this, set the ZipFilename property.

· Specify the files you want to zip up. To do this, set the FilesToProcess property.

· Specify the self-extractor binary to use. To do this, set the SfxBinaryModule property.

· Tell Xceed Zip to start zipping. To do this, call the Zip method.

· Make sure it worked successfully. To do this, check the Zip method's return value.

Here is sample code for these 5 steps:
' Don't forget to put an Xceed Zip control on a form
Dim ResultCode As xcdError
XceedZip1.ZipFilename = "c:\test\A self-extracting zip file.exe"
XceedZip1.FilesToProcess = "c:\documents\word*.doc"
XceedZip1.SfxBinaryModule = "xcdsfx32.bin"
ResultCode = XceedZip1.Zip
If ResultCode = xerSuccess Then
 MsgBox "Created successfully."
Else
 MsgBox XceedZip1.GetErrorDescription(xvtError, ResultCode)
EndIf

Things you should consider

You will probably want to customize the self-extracing zip files you create. For example, you may want to
change its title and introduction message, or have it suggest a default unzipping folder. There is a group of
properties that start with "Sfx" designed to let you do just that. See the About the Self-Extractor Module
properties topic to find out what you can customize.

Other than customizing the appearance and behavior of the self-extracting zip file, you should also ask yourself
the following questions:

· The self-extracting zip file always recreates files with their stored paths. Do you want to store paths
in the zip file? See the controlling how paths are stored topic.

· Do you want to password-protect the files in your self-extracting zip files? See the
EncryptionPassword property. Self-extracting zip files that contain password protected files will display a
dialog box asking the user to enter a decryption password, otherwise the encrypted files will be skipped.
There's also the SfxDefaultPassword property that lets the self-extracting zip file decrypt some or all of its
contents without asking the user for a password.

· Do you want to zip up files in subfolders, too? See the ProcessSubfolders property.

· Do you want to display the status of the zipping operation? See the GlobalStatus event.

· Is there a chance the self-extracting zip file may span multiple disks? If so, write a handler for the

InsertDisk event.

Other questions you may want to consider are:

· Do you want to zip only certain types of files? See the filtering properties.

· Do you want to edit a file's info before zipping? See the ZipPreprocessingFile event.

· Is there a chance you're zipping files already open? See the ZipOpenedFiles property.

· Are you looking for the best compression ratio? See the CompressionLevel property.

· Do you want to store Unicode filenames in the zip file? See the ExtraHeaders property.

If there's anything else you need to do that's not mentioned here, consult the Properties topic, or search the index
– chances are, Xceed Zip does what you need. If not, ask Xceed Software whether it's possible or not.

 Overview of the Xceed Zip control

The Xceed Zip control handles all zip and unzip tasks other than compression directly from one memory block to
another. Memory-only compression is done through the Xceed Compression control. Both of these controls are
part of the same component (XCEEDZIP.DLL).
The Xceed Zip control is a very flexible compression and decompression component that is fully compatible with
the latest zip file format. Regular and multi-disk zip files created by Xceed Zip can be used by PKZip 2.04g, and
vice-versa. Xceed Zip does not unzip files from zip files created with old versions of PKZip before PKZip 2.0 -
those files must be converted to the new format.
Xceed Zip provides a large number of properties, methods and events allowing full-featured manipulation of zip
files, real-time progress reports and easy integration with a graphical user interface.

Resources

· Methods
· Properties
· Events
· Enumeration types
· Error codes
· Warnings
· Skipping reasons

Getting started quickly

· Zipping files
· Unzipping files
· Listing the contents of a zip file
· Creating or unzipping a spanned zip file
· Adding a progress bar
· Creating a new self-extracting zip file
· Converting a zip file to self-extracting
· Zipping from memory to a zip file
· Unzipping from a zip file to memory
· Compression entirely in memory

Other information

· Brief introduction to the zip file format
· Controlling how paths are stored in the zip file
· Formless use of the control
· Running multiple operations at the same time

 Overview of the Xceed Compression control

The Xceed Compression control handles compression and decompression when the source and destination are
blocks of memory. The data can be provided in a single block of memory, or in streaming fashion. Encruption and
configurable compression factors are also supported. The Xceed Compression control does not work with zip files
at all. All zip and unzip tasks involving files and are handled by the Xceed Zip control. Both the Xceed
Compression and Xceed Zip controls are part of the same library file (XCEEDZIP.DLL).
The Xceed Zip compression control uses the same compression algorithm that is used for zipping to and from zip
files, but does not include the same type of information in the compressed data. When you compress data with the
Xceed Compression control, the data does not have any file or date information embedded into it, nor does it
contain local headers, a central directory, and other zip format related structures. The compressed data is almost
pure raw compressed data. The only overhead added to the data is an encryption header (when applicable) and a
32-bit checksum that is used when uncompressing the data to ensure there are no errors.

Resources

· Methods
· Properties
· Enumeration types
· Error codes

Getting started quickly

· Compression entirely in memory

Overview of the Self-Extractor Module

Welcome to the Xceed Zip Self-Extractor Module!

The Xceed Zip Self-Extractor Module is an optional module that can be purchased for use with the Xceed Zip
Compression Library. The Xceed Zip Self-Extractor Module provides support for creating fully customizable 16 and
32-bit self-extracting Windows zip files. These self-extracting zip files allow a user to simply "run" the zip file to
unzip its contents. The self-extracting zip files contain all the code necessary to unzip their contents, so no
unzipping programs, DLLs or other components are required on the user's machine in order to unzip the contents
of the Zip file.

It works together with the Xceed Zip Compression Library

The Xceed Zip Compression Library lets your Windows applications transform an already existing zip file into a
self-extracting zip file, or create new self-extracting zip files. Combine these capabilities with the self-extractor
binary provided by the Xceed Zip Self-Extractor Module, and your Windows applications will be able to fully
configure the self-extracting zip files they create. Your applications can customize the self-extractor's title,
introduction message, icon, default unzip folder, text and button captions, and more. You can make it display a
readme file and license agreement, run a program after the unzipping is complete, and even prompt the user for
passwords to decrypt files. See the features topic for a complete list of the capabilities that the Self-Extractor
Module provides.
The Xceed Zip Self-Extractor Module lets you make 16-bit self-extracting zip files that will work on all Windows 3.x,
Windows 95, 98 and NT operating systems, or you can make 32-bit self-extracting zip files that support long
filenames and will work on Windows 95, 98 and NT operating systems.
The properties used to configure the self-extractor are built into the Xceed Zip Compression Library components.
Users who have purchased a copy of the Xceed Zip Self-Extractor Module are able to set these extra properties
and start making self-extracting zip files as easily as they create regular zip files. Users who don't own a copy of
the Xceed Zip Self-Extractor Module can still use the properties related to the Xceed Zip Self-Extractor Module,
but in "free trial version" mode. When in free trial version mode, any self-extracting zip files created with the Xceed
binaries will be considered trial versions and will inform you of this when they are executed. Feel free to try it out.

Resources

· Methods
· Properties
· Enumeration types

Getting started quickly

· Creating a new self-extracting zip file
· Converting a zip file into a self-extracting zip file

About the ActiveX component

The XCEEDZIP.DLL is a fully self-contained COM ActiveX control written entirely with ATL v3.0 and Visual C++
6.0. There are no external dependencies required for its operation such as other DLLs.
The control's DLL file can be found in the "C:\PROGRAM FILES\XCEED ZIP\BIN" directory, if you installed your Xceed
Zip package in the default location.
The ActiveX control supports both the single-threaded apartment and the multi-threaded apartment models, and
therefore will not work with Windows NT 3.51 because the DCOM extensions are not available for that operating
system.
The control is digitally signed with Microsoft Authenticode technology, with VeriSign as the certificate verification
authority. This ensures that the component has not been tampered or modified by parties other than Xceed
Software, and is also useful when the component is used on web pages so that browsers do not complain about
security issues.
Typically, applications that use ActiveX controls are distributed with an install or setup program that will also take
care of registering the controls on the machine. If you aren't using a setup program, then you will have to manually
register the component on the machine.

How to manually register the ActiveX component

The registration process referred to here is not related to licensing, it refers to the process of making the control
known to the operating system. If you don't use an install program with this capability built-in, you can register your
controls manually. From the Run option in the Windows 95 or Windows NT start menu, or from a command
prompt, run the following command to register an ActiveX control:

regsvr32 "path and filename of the ActiveX control's DLL file"
You will then see a message box that either displays "LoadLibrary failed" or displays "LoadLibrary succeeded". If
you get the success message, then the control is now registered on the machine and is ready for use by
applications or in your development environment. If you get the failure message, make sure you specified a
correct path and filename, and placed it in quotes if it has spaces in it.

Registration problems

If you are unable to register a fully-self contained ActiveX control on a target machine, even after following the
instructions above, Xceed is currently aware of only one possible problem that may prevent proper registration of
ActiveX controls. The problem applies to systems running the original release of Windows 95 or OSR1. If these
machines don't have Internet Explorer v4.0 or up, then you will need to install DCOM 95 (available from Microsoft's
web site) which will update the COM support for these machines.

About the Self-Extractor binaries

The Xceed Zip Self-Extractor Module provides 16 and 32-bit Windows self-extractor binaries that the Xceed Zip
control uses when creating customizable self-extracting zip files.
The binaries can be found in the "C:\PROGRAM FILES\XCEED ZIP\SFX" directory, if you installed your Xceed Zip
package in the default location.
The binaries contain all the code necessary to unzip files and display their user interface. No external DLLs, Xceed
Zip ActiveX control, support DLLs, components or applications are required to run self-extracting zip files that use
the Xceed Zip Self-Extractor Module binaries.
The binaries are incorporated into the zip file at the moment of its creation, or after it has been created (for
example, when using the Convert method). Therefore, these binaries must be distributed with your application,
because they need to be found by the Xceed Zip Compression Library in order to make the Zip file self-extracting.
The SfxBinaryModule property is used to provide their location to Xceed Zip.
The XCDSFX32.BIN file is the 32-bit binary, which works on all Windows 95/98 and Windows NT operating systems
running on Intel 386-compatible CPUs. It supports long filenames, multiple-disk spanning, encryption passwords
for individual files, displaying text files, running another application, and more. (See the features list for details)
The XCDSFX16.BIN file is the 16-bit binary, which works on 16-bit Windows 3.x as well as Windows 95/98 and
Windows NT. It is more compact than the 32-bit binary, but does not support long filenames and uses a custom,
non-Windows 95 style directory browser.

What must be distributed

You only need to distribute the XCEEDZIP.DLL file with your applications in order for the Xceed Zip Compression
Library to work. If you are creating self-extracting zip files with the Self-Extractor Module, you'll also need to
distribute the XCDSFX16.BIN or XCDSFX32.BIN file, depending on which one your application uses.
It is highly recommended to place the XCEEDZIP.DLL file in the Windows System folder, with an application that
does version checking, so that an already existing version of the file is not overwritten by an older version. Xceed
Software will ensure that as long as the file keeps the XCEEDZIP.DLL name, it will always be backwards compatible
with older versions. So applications compiled to work with Xceed Zip v4.0 will work with future versions of this file
as well.
The XCEEDZIP.DLL file is fully self-contained, which means that target machines do not need any other files (such
as THE MFC40.DLL or MSVCRT40.DLL for example) in order for the XCEEDZIP.DLL to register and work on the
machine. The early releases of Windows 95 (up to OSR1) require that you install the DCOM update or Internet
Explorer v4.0, so that you can use apartment threaded components.
Only registered users can deploy applications that use the Xceed Zip Compression Library.

Getting Started Sample Application For VB5 and VB6

The Getting Started Sample Application for VB5 and VB6 can be found in the C:\PROGRAM FILES\XCEED ZIP\
SAMPLES\GETTING STARTED\VB5 folder (or the VB6 folder).
To use the sample, load the STARTED.VBP project file, then run the program. The application itself explains
everything to you on screen and with the help of pop-up tooltip boxes when you move the mouse over the controls
in run mode.

Zip Manager Sample Application for VB5 and VB6

The Zip Manager Sample Application for VB5 and VB6 can be found in the C:\PROGRAM FILES\XCEED ZIP\
SAMPLES\GETTING STARTED\VB5 folder (or the VB6 folder).
The sample includes fully commented source code which should complement the examples available in the online
help, but in the context of a real application, not specific examples designed exclusively to demonstrate each
method. We propose that you dive right into the sample's source code and take a look.
To use the sample, load the ZIPMANAGER.VBP project file, then run the program.
The Zip Manager Sample Application is a Windows program that allows you to manipulate zip files. By looking at
the source code, you will find out how to zip, unzip, delete files, update and test files in a zip file using the Xceed
Zip Compression Library v4.0 control. You will also see how event handlers are written for different events
The program works in a similar fashion to WinZip™. To create a zip file, you select the "New zip file" item from the
File menu. A dialog box will be shown to allow you to enter a path and filename for the zip file, and then the "Add
or update files" dialog box will be shown to allow you to add files to the zip file immediately. Just select the files to
add, and click the "Zip!" button. Once the files have been added, the listbox will display the (new) contents of the
zip file. The other options work in a similar fashion.
The status bar below the main listbox indicates what is currently happening during any zip file operation. For
example, when zipping files, it will display the name of each file as it is being zipped. To the right of the status bar
is a progress bar that shows you the progress of the current operation. When you are zipping tens of thousands
of files, it might take a while before the progress bar starts to show the progress, because the library is scanning
the drive to optain the total number of files you will be zipping – and this can take a few seconds at best.
The source code for this sample application is fully commented. Registered users of the Xceed Zip Compression
Library can use this sample application, or portions of it, in their own commercial or private applications, royalty-
free.

License, copyright and disclaimer

The use of this package indicates your understanding and acceptance of the following terms and conditions. This
license shall supersede any verbal, or prior verbal or written, statement or agreement to the contrary. If you do not
understand or accept these terms, or your local regulations prohibit "after sale" license agreements or limited
disclaimers, you must cease and desist using this product immediately.

Copyright: This product is Copyright ©1995-1999 Xceed Software Inc., all rights reserved. This product is
protected by Canadian and United States copyright laws, international treaties and all other applicable national or
international laws. This software product and documentation may not, in whole or in part, be copied, photocopied,
translated, or reduced to any electronic medium or machine readable form, without prior consent in writing, from
Xceed Software Inc. and according to all applicable laws. The sole owner of this product is Xceed Software Inc.

Liability disclaimer: This product and/or license is provided as is, without any representation or warranty of any
kind, either express or implied, including without limitation any representations or endorsements regarding the use
of, the results of, or performance of the product, its appropriateness, accuracy, reliability, or correctness. The entire
risk as to the use of this product is assumed by the user and/or licensee. Xceed Software Inc. does not assume
liability for the use of this program beyond the original purchase price of the software. In no event will Xceed
Software Inc. be liable for additional direct or indirect damages including any lost profits, lost savings, or other
incidental or consequential damages arising from any defects, or the use or inability to use these programs, even if
Xceed Software Inc. has been advised of the possibility of such damages.

Restrictions: You may not use, copy, modify, translate, or transfer the programs, documentation, or any copy
except as expressly defined in this agreement. You may not attempt to unlock or bypass any "copy-protection" or
authentication algorithm utilized by the program. You may not remove or modify any copyright notice, nor the
About dialog or the method by which it may be invoked.

Operating license: You have the non-exclusive right to use any enclosed program only by a single person, on a
single computer at a time. You may physically transfer the program from one computer to another, provided that
the program is used only by a single person, on a single computer at a time. In group projects where multiple
persons will use the program, you must purchase an individual license for each member of the group. Use over a
"local area network" (within the same locale) is permitted provided that the program is used only by a single
person, on a single computer at a time. Use over a "wide area network" (outside the same locale) is strictly
prohibited under any and all circumstances.

Linking and distribution license: In order to link and distribute compiled Xceed Zip Compression Library code,
including the XCEEDZIP.DLL, XCDSFX16.BIN and XCDSFX32.BIN files, in accordance to this license, you must be
registered with Xceed Software Inc. as an authorized licensee. You may not reproduce or distribute copies of the
complete package, any of the source, interface, code units or any license (.LIC) files, the LICENSE.TXT file, your
private license key, any of the documentation, nor may you supply any means by which your users could create,
modify, or incorporate the Xceed Zip Compression Library or Xceed Zip Self-Extractor Module in their own
products. Violations will be prosecuted to the maximum extent possible under the law.

Back-up and transfer: You may make one copy of the program solely for "back-up" purposes, as prescribed by
Canadian, United States, and international copyright laws. You must reproduce and include the copyright notice on
the back-up copy. You may transfer the product to another party only if the other party agrees to the terms and
conditions of this agreement, and completes and returns registration information (name, address, etc.) to Xceed
Software Inc. within 30 days of the transfer. If you transfer the program you must at the same time transfer the
documentation and back-up copy, or transfer the documentation and destroy the back-up copy. You may not retain
any portion of the program, in any form, under any circumstance.

Terms: This license is effective until terminated. You may terminate it by destroying the program, the
documentation and copies thereof. This license will also terminate if you fail to comply with any terms or conditions
of this agreement. You agree upon such termination to destroy all copies of the program and of the documentation,
or return them to Xceed Software Inc. for disposal.

Other rights and restrictions: All other rights and restrictions not specifically granted in this license are reserved
by Xceed Software Inc.

Acknowledgments

Numega

Xceed Zip v4.0 was extensively checked and processed with the help of Numega's BoundsChecker,
TrueCoverage, TrueTime software and of course, lots of beta testing! BoundsChecker finds memory and resource
leaks, checks API calls for accuracy, and finds a host of other potential problems. TrueCoverage makes sure every
single line of code was tested. TrueTime allows you to find out what the bottlenecks are in your code and helps
you optimize and fine tune your code for maximum speed. These products may not come cheap, but they're worth
every penny.

Zlib and Info-Zip

In previous releases of the Xceed Zip Compression Library before version 4.0, the zip file format handling routines,
as well as the compression and decompression routines used to perform the major zip archive operations were
based on the work by the Info-Zip group. We wish to thank the members of the Info-Zip group for the outstanding
contribution that they have provided the software community.
As of the Xceed Zip Compression Library v4.0 release, all zip file format handling routines used by Xceed Zip are
based on Xceed Software design and programming. Everything is written entirely in threadsafe, object-oriented
Visual C++ 6.0 code.
The compression and decompression algorithms used by Xceed Zip are based on the Zlib library, written by Jean-
Loup Gailly and Mark Adler. Zlib is a publicly available library that includes source code for the "deflate"
compression and decompression algorithm. You can download it from the Zlib web site (if you are interested in it,
we suggest you do a search on yahoo.com in order to make sure you have the latest web site address).
There are no extra charges or costs due to the use of the Zlib code in the Xceed Zip Compression Library.

Blue Sky

This help documentation was created with RoboHelp Office. It is a very complete package that includes lots of
time-saving tools, is very robust, and fully integrates with Microsoft Word in order to provide a familiar .

Absolute Packager

The Xceed Zip Compression Library is packaged with a self-extracting zip file created by
Absolute Packager, one of our own products. Absolute Packager itself internally uses the
Xceed Zip Compression Library v3.5 and Xceed Zip Self-Extractor Module!

Xceed Software's address, phones and email

You can contact us through any of the following:

Internet

Web site

info@xceedsoft.com (general inquiries)
support@xceedsoft.com (technical support)
www.xceedsoft.com

Telephone
Orders
Fax

(450) 442-2626
(800) 865-2626
(450) 442-4604

Mail Xceed Software Inc.

1555 Boul. Jean-Paul Vincent
Suite 180
Longueuil, Québec
Canada J4N 1L6

XCEED SOFTWARE INC.
1555 Boul. Jean-Paul Vincent
Suite 180
Longueuil, Québec
Canada J4N 1L6

Tel: (800) 865-2626 (Orders)
Tel: (450) 442-2626 (Tech)
Fax: (450) 442-4604

Fax Back Order
Form

(450) 442-4604

Please fill in the form below and send back for immediate service. Please print clearly.

Please note that your order will be charged in Canadian dollars at the current US dollar exchange rate.

Document revision 5400

How to order Xceed Zip

To place an order

Contact Xceed Software directly using the (800) 865-2626 order line, fax/mail an Order Form, or use the secure
online ordering system at www.xceedsoft.com. See the order form for pricing information.
If you are an established distributor or reseller and you wish to carry Xceed products, please contact us directly.

When ordering, please follow these simple guidelines

· Print or type clearly. Do not assume we will know what city, state/province, or country you are in. This is
especially important for foreign orders, where it is more difficult for us to guess what a city or state might be.
For telephone or fax numbers, please include your country code, and/or make sure that the country is
spelled out completely. Do not use abbreviations such as UK, DN, FR, etc. It will avoid confusion and
greatly accelerate processing your order.

· We can only accept credit cards, US or Canadian checks, and international bank drafts or money orders.
Please do not send EuroChecks or request bank transfers. All checks must be drawn on a US or Canadian
bank.

· If you are sending a check or a bank draft, and this file is more than 6 months old (past September 1999),
please make sure that the price has not changed before you order.

· If you send a bank draft, please do not have the bank send it automatically. You must include an order form
with the bank draft.

· If you order by credit card, please make sure you include all the details, including the card number, the
expiration date, and the complete name on the card. Do not send a fax/letter asking us to call you for the
card number. Call us directly if you do not want to include the card number on your fax.

· Although we will always do our utmost to process your order as quickly as possible, it can sometimes take
up to 48 hours. Please consider this when you place a rush order.

· Finally, please note the time before you call and check the time difference between your time zone and
ours. We are located in the Eastern standard time zone.

These few guidelines will help assure that everyone will get their order processed quickly and correctly.

Upgrades

We periodically provide bug fixes and upgrades for our products. Always check our Web site at
www.xceedsoft.com for the latest information on the Xceed Zip Compression Library and the Xceed Zip Self-
Extractor Module.

Upgrade policy

Minor changes and bug fixes are free; major revisions carry an upgrade fee. If we release a major revision within
60 days of your purchase, and it is identically priced, we will provide the upgrade free of charge. Shipping and
handling are always extra. We do not automatically inform you of minor fixes, only major revisions.

Upgrade pricing and purchasing

Purchasing an upgrade entitles you to 1 year's worth of unlimited minor and major upgrades. A year's worth of
upgrades for the Xceed Zip Compression Library costs $99 US.
The upgrade price applies to upgrades from any previous version of the Xceed Zip Compression Library or Xceed
Zip Self-Extractor Module.
All upgrades and discounts must be obtained directly from Xceed Software Inc. See the How to Order topic.
Upgrade prices are subject to change without any prior notice.

Technical support

Before you contact us

In order to save everyone some time, we'd like you to do a few things before you contact us. We know the urge to
call is great, but we'd appreciate it if you double check this list:

· Have you consulted the Windows Help manual?
· Have you used the search feature of the manual?
· Have you looked at the sample application sources?

If you got this far, it must be a tough one. Maybe it's time to tell us about your problem. Start by noting down the
language you are using, the version of the Xceed Zip Compression Library, the exact error message (if any) or
error code values you are getting, the operating system you are running your project on and a brief description of
what you are trying to do. It would be a good idea to also note down exactly when the problem occurs.

How to contact us

The preferred method of contacting us for technical support is on the Internet. You can send any questions or
problems to our Internet address: support@xceedsoft.com. Do not leave questions in newsgroups or on
CompuServe forums as they probably won't be answered.
We also offer free telephone support on an "as available" basis, Monday through Friday usually from 9 a.m. to 5
p.m. Eastern standard time. Please note the time before you call and check the time difference between your time
zone and ours. Sorry, we cannot return international calls.
Although there is currently no expiration date on free support, we reserve the right to restrict it to the first 90 days
from the time of purchase, without any prior notice.

Year 2000 compliance

All of Xceed Software's active products have been tested and conform to Year 2000 compliance criteria. Xceed
Software products have no inherent dependencies on date/time, and to the best of our knowledge, will not be
adversely affected by the internal computer clock setting prior to, during and after January 1, 2000.
All future software upgrades of the products, listed below, shall be placed under the scrutiny of Year 2000
compliance. Software tested includes:

· Xceed Absolute Packager v1.0 and up
· Xceed Zip Compression Library v3.0 and up
· Xceed Zip Self-Extractor Module v1.0 and up

Xceed Software does not provide contractual warranties or guarantees specific to Year 2000 readiness. Xceed
Software product guarantees are set forth in the License Agreement section included in each of our manuals. We
recommend that you read these agreements in order to fully understand your rights. Any information provided by
Xceed Software regarding Year 2000 issues does not constitute an extension of any Xceed Software guarantee.
Please note that the Xceed Zip Compression Library and Xceed Zip Self-Extractor Module are software
development tools. We have no control over the ultimate quality or accuracy of products developed using our
tools. Therefore, Xceed Software provides no guarantee whatsoever in connection with Year 2000 compliance of
any software, application, or operating system developed by third parties using our products.

Zip method

VB example Delphi example

Description

The Zip method compresses and stores files into a new or existing zip file.
The zip file to be written to must be specified by setting the ZipFilename property. When you run the Zip method, if
the specified zip file does not exist, a new one will be created.
The files to zip up must be specified by setting the FilesToProcess property.

Declaration
Method Zip() As xcdError
Parameters

None

Return values

A return value of type xcdError is returned. Only the return value of xerSuccess indicates that the method has
been completed successfully. See the error codes topic for a list of possible return values.

Remarks

If one or more files to zip up already exist in the zip file being written to, the files already in the zip file will be
replaced with new ones - unless one of the filtering properties causes the file to be excluded from processing.

Applicable properties

Abort, BasePath, CompressionLevel, EncryptionPassword, FilesToProcess and the filtering properties, SplitSize,
PreservePaths, ProcessSubfolders, the SkipIf* properties, TempFolder, UseTempFile, ZipFilename,
SpanMultipleDisks, ExtraHeaders, ZipOpenedFiles and the Sfx* properties.

Events triggered

ZipPreprocessingFile, FileStatus, GlobalStatus, QueryMemoryFile, InsertDisk, DiskNotEmpty, ZipComment,
ZippingMemoryFile, Warning, SkippingFile, InvalidPassword, and ProcessCompleted.

Related topics

If you want to create spanned zip files, refer to the SpanMultipleDisks property.

Unzip method

VB example Delphi example

Description

The Unzip method uncompresses files that are stored in a zip file and recreates them into the folder specified by
the UnzipToFolder property.
The zip file to unzip from must be specified by setting the ZipFilename property.
The files to unzip must be specified by setting the FilesToProcess property. If the FilesToProcess property is left
empty, then all the files in the zip file will be unzipped. Use the filtering properties when you need to limit
processing to only files with specific attributes, sizes, dates, etc.

Declaration
Method Unzip() As xcdError
Parameters

None

Return values

A return value of type xcdError is returned. Only the return value of xerSuccess indicates that the method has
been completed succesfully. See the error codes topic for a list of possible return values.

Remarks

None

Applicable properties

Abort, EncryptionPassword, FilesToProcess and the filtering properties, PreservePaths, ProcessSubfolders, the
SkipIf* properties, UnzipToFolder, ZipFilename and ExtraHeaders.

Events triggered

InsertDisk, UnzipPreprocessingFile, SkippingFile, FileStatus, GlobalStatus, UnzippingMemoryFile, Warning,
InvalidPassword, ZipComment and ProcessCompleted.

PreviewFiles method

Description

The PreviewFiles method provides the complete list of files that will end up being processed if a call is made to the
Zip method with the current property settings. The PreviewFiles method also calculates and reports statistics on
the entire group of files listed.
The files listed by the PreviewFiles method are determined by the same properties that affect the Zip method –
namely the FilesToProcess, FilesToExclude, the Skip* properties and the filtering properties.
The PreviewingFile event is triggered for each file being listed. This event provides detailed file information.
The ProcessCompleted event provides the statistics for the entire group of files listed.

Declaration
Method PreviewFiles(bCalcCompSize As Boolean) As xcdError
Parameters

bCalcCompSize
The bCalcCompSize parameter determines whether the PreviewFiles method should calculate and report
the total compressed size of all the listed files. If the bCalcCompSize parameter is set to True, the
calculation is performed and the result is provided by the ProcessCompleted event. This allows you to
make accurate estimates of the number of floppy or other removable media disks required in order to zip
these files in a spanned zip file. The calculation involves completely reading each file's data and
compressing it to memory.

Return values

A return value of type xcdError is returned. Only the return value of xerSuccess indicates that the method has
been completed succesfully. See the error codes topic for a list of possible return values.

Remarks

The PreviewFiles method works by creating a copy of the contents of the FilesToProcess property, expanding all
wildcards, removing all the files that aren't currently accessible on the local machine or network, removing files
that match entries in the FilesToExclude property and removing any files excluded by the filtering properties . The
resulting list of files ends up being the same as the list of files that will be processed by the Zip method when it is
called.

Applicable properties

Abort, BasePath, FilesToProcess and the filtering properties, PreservePaths and ProcessSubfolders.

Events triggered

PreviewingFile, ProcessCompleted

Related topics

The ListZipContents method is the equivalent of the PreviewFiles method, but for files already inside a zip file.

ListZipContents method

VB example Delphi example

Description

The ListZipContents method lists and provides detailed information on the files contained in a zip file. It also
calculates and reports statistics on the entire group of files listed.
The zip file to list must be specified by the ZipFilename property.
The ListingFile event is triggered for each file being listed. This event provides detailed file information.
The ProcessCompleted event provides the statistics for the entire group of files listed.
If the FilesToProcess property is empty, all files in the zip file will be listed, except those that are excluded by the
filtering properties.

Declaration
Method ListZipContents() As xcdError
Parameters

None

Return values

A return value of type xcdError is returned. Only the return value of xerSuccess indicates that the method has
been completed succesfully. See the error codes topic for a list of possible return values.

Remarks

The files listed by the ListZipContents method can be limited by the FilesToProcess, FilesToExclude and the
filtering properties – but are not affected by the SkipIf* properties. Therefore, if you don't use the SkipIf* properties,
the ListZipContents method can be used to obtain the complete list of files that will end up being processed by a
call to the Unzip method.

Applicable properties

Abort, ZipFilename, FilesToProcess, ProcessSubfolders and the filtering properties.

Events triggered

ListingFile, InsertDisk, GlobalStatus, ZipComment, Warning and ProcessCompleted

Related topics

The PreviewFiles method is the equivalent of the ListZipContents method, but for files on disk – not already in a
zip file.

RemoveFiles method

VB example Delphi example

Description

The RemoveFiles method removes files from a zip file.
The zip file to remove files from must be specified by setting the ZipFilename property.
The files to remove must be specified by setting the FilesToProcess property. The FilesToExclude property and the
filtering properties are also consulted to allow you to limit processing to only specific types of files.
The RemoveFiles method will not operate on spanned zip files.

Declaration
Method RemoveFiles() As xcdError
Parameters

None

Return values

A return value of type xcdError is returned. Only the return value of xerSuccess indicates that the method has
been completed succesfully. See the error codes topic for a list of possible return values.

Remarks

Be careful when the ProcessSubfolders property is set to true – specifying "*" in FilesToProcess will in this case
erase all files from the zip file.

Applicable properties

Abort, FilesToProcess and the filtering properties, ProcessSubfolders, TempFolder and the UseTempFile property
which must be set to True.

Events triggered

RemovingFile, GlobalStatus

Related topics

Related topics

TestZipFile method

Description

The TestZipFile method checks the integrity of a zip file, and can also check to make sure all files inside the zip file
can be correctly unzipped back to their original uncompressed form without loss of information.
The Warning event is triggered whenever an error is detected in the zip file structure.
The TestZipFile method's return value provides you with the conclusion on the integrity of the zip file.

Declaration
Method TestZipFile(bCheckCompressedData As Boolean) As xcdError
Parameters

Parameter Description
bCheckCompressedData Determines whether or not each file's compressed data should be checked for

errors. Setting this property to True will cause Xceed Zip to uncompress each
file's data to memory and verify that the file's stored CRC corresponds with the
uncompressed data's CRC. Setting this property to False will cause Xceed Zip to
skip the compressed data test and report only zip file structure problems.
This parameter is optional. If it is not supplied, it the default value is True.

Return values

A return value of type xcdError is returned. Only the return value of xerSuccess indicates that the method has
been completed succesfully. See the error codes topic for a list of possible return values.

Remarks

If you are trying to determine the integrity of the individual files inside the zip file, as opposed to the integrity of the
entire zip file, use the bFileCompleted parameter of the FileStatus event which is also generated when you run the
TestZipFile method. When a FileStatus event is triggered with bFileCompleted = True, you know that the current
file being tested is correctly unzippable.
You cannot set the FilesToProcess property to only test certain files in the zip file. The TestZipFile method tests all
the files in a zip file when the bCheckCompressedData parameter is set to True.

Applicable properties

Abort, EncryptionPassword, ZipFilename

Events triggered

InvalidPassword, InsertDisk, SkippingFile, TestingFile, FileStatus, GlobalStatus, Warning and ProcessCompleted

AddFilesToProcess method

Description

The AddFilesToProcess method adds an item to the FilesToProcess property's list of files to process.
AddFilesToProcess automatically handles separating items with the CR+LF characters. In fact, it performs the
same work as the following line of code:

XceedZip1.FilesToProcess = XceedZip1.FilesToProcess + sFileMask + Chr(13) +
Chr(10)

Declaration
Method AddFilesToProcess(sFileMask As String)
Parameters

Parameter Description
sFileMask The item to add to the FilesToProcess property's list of files.

Return values

None

Applicable properties

FilesToProcess

Events triggered

None

AddFilesToExclude method

Description

The AddFilesToExclude method adds an item to the FilesToExclude's list of files to process.
AddFilesToExclude automatically handles separating items with the CR+LF characters. In fact, it performs the
same work as the following line of code:

XceedZip1.FilesToExclude = XceedZip1.FilesToExclude + sFileMask + Chr(13) +
Chr(10)

Declaration
Method AddFilesToExclude(sFileMask As String)
Parameters

Parameter Description
sFileMask The item to add to the FilesToExclude property's list of files.

Return values

None

Applicable properties

FilesToExclude

Events triggered

None

Abort property

Description

The Abort property allows you to stop the execution of a currently running Xceed Zip method.
At any time during the execution of an Xceed Zip method, setting the Abort property to True will cause the
currently executing method to abort and return the xerUserAbort value, which indicates that the abort was
successful. The Abort property is automatically set back to False whenever a new method is called.
In order to properly terminate the current operation, the response to the Abort property is not always
instantaneous.
This property is not browsable by an object browser.

Data type

Boolean

Default value

False

Applicable methods

All methods except AddFilesToProcess and AddFilesToExclude

Related topics

To find out what the current operation being executed is, use the CurrentOperation property.

BasePath property

Example

Description

The BasePath property allows you to specify the starting path for all entries in the FilesToProcess and
FilesToExclude properties that have been specified using relative paths.
If the BasePath property is left empty, relative paths specified in the FilesToProcess and FilesToExclude properties
will be relative to the application's current directory, which is not recommended.
This property is particularly useful for controlling how paths are stored in the zip file.

Data type

String

Default value

Empty

Applicable methods

Zip

Related topics

If you want more control over how path and/or filenames are stored in the zip file, you can use the
ZipPreprocessingFile event to change stored path and filenames to whatever you want.
If you don't want any path information to be stored in the zip file, you can use the PreservePaths property.

CompressionLevel property

Description

The CompressionLevel property controls the amount of compression to be applied to files being zipped. The
greater the amount of compression applied, the greater the time it takes to perform the compression. The
CompressionLevel property affects the Zip method only.

Data type

xcdCompressionLevel

Possible values

Value Meaning
xclNone (0) No compression. Files are stored in the zip file as raw data.
xclLow (1) Minimum compression. This setting takes the least amount of time to compress

files. When compared to the XcdMedium setting, this setting usually gives
noticeably faster compression times in exchange for about 1 to 15% larger
compressed files.

xclMedium (6) Normal compression. This is the best balance between the time it takes to
compress a file and the compression ratio achieved.

xclHigh (9) Maximum compression. This setting achieves the best compression ratios that
the Zip deflate compression algorithm is capable of producing. When compared
to the xcdMedium setting, this setting significantly increases compression time in
exchange for about 1-3% smaller compressed files. We recommend that you use
this setting only when you really need to achieve the smallest possible files and
when compression time is unimportant.

Default value

xclMedium

Applicable methods

Zip

EncryptionPassword property

Description

The EncryptionPassword property contains the case-sensitive password to be used for encrypting or decrypting
files.
The password specified in the EncryptionPassword property applies to all the files being zipped, unzipped or
tested. To be able to specify different passwords for each file, use the ZipPreprocessingFile or
UnzipPreprocessingFile events which are triggered for each file before it is zipped, unzipped or tested.
If the EncryptionPassword property is left empty before executing the Unzip or TestZipFile methods, and no
password is provided using the UnzipPreprocessingFile event, then no encrypted files will be unzipped or tested.
The SkippingFile event is triggered for each file skipped because of a missing or incorrect password.
If the EncryptionPassword property is empty before executing the Zip method, and no password is provided using
the ZipPreprocessingFile event, then any newly zipped files will not be encrypted. Files that are already in the zip
file will remain in their current state (either non-encrypted or encrypted) and must be rezipped in order to change
them from non-encrypted to encrypted files and vice-versa.
Passwords can be up to 80 characters long.

Data type

String

Default value

Empty

Remarks

The encryption algorithm used by the Xceed Zip Compression Library is the same one used by the PKZip 2.04g
program. This type of encryption can resist attacks by amateurs if the password is well chosen and long enough
(at least 16 characters) but it will probably not resist attacks by determined users or experts. Therefore, we
suggest that you always use long passwords, and when possible, do not rely solely on this encryption system to
protect sensitive data.

Applicable methods

Zip, Unzip, TestZipFile

RequiredFileAttributes property

Example

Description

The RequiredFileAttributes property lets you limit the processing of files to only those files that have specific file
attributes on. This property affects the list of files specified in the FilesToProcess property.
Files that do not have the required file attributes will be tagged as "excluded" when the ZipPreprocessingFile or
UnzipPreprocessingFile event is triggered, and will not be processed unless you change the value of the excluded
parameter to False during the event.
To specify multiple file attributes that must be on, set the RequiredFileAttributes property equal to the sum of the
values for each required file attribute.

Data type

xcdFileAttributes

Possible values

Value Meaning
xfaNone (0) No specific attributes must be on in order to process files.
xfaReadOnly (1) Read-only attribute required.
xfaHidden (2) Hidden attribute required.
xfaSystem (4) System attribute required.
xfaVolume (8) Volume Label attribute required.
xfaFolder (16) Folder / directory attribute required.
xfaArchive (32) Archive bit attribute required.

Default value

xfaNone

Applicable methods

Zip, Unzip, ListZipContents, PreviewFiles, RemoveFiles

Related topics

The ExcludedFileAttributes property lets you limit the processing of files to only those files that don't have specific
file attributes on, as opposed to only processing files that have these attributes on.
If you want to create your own, special filters in order to limit which files are processed, you can use the
ZipPreprocessingFile or UnzipPreprocessingFile events to specifically exclude files (just set the excluded
parameter whenever you want to exclude a file).

ExcludedFileAttributes property

Example

Description

The ExcludedFileAttributes property lets you limit the processing of files to only those files that do not have
specific file attributes on. This property affects the list of files specified in the FilesToProcess property.
Files that have the file attributes specified with the ExcludedFileAttributes property will be tagged as "excluded"
when the ZipPreprocessingFile or UnzipPreprocessingFile event is triggered, and will not be processed unless you
change the value of the excluded parameter to False.
To specify multiple file attributes that you do not want to process, set the ExcludedFileAttributes property equal to
the sum of the values for each file attribute.

Data type

xcdFileAttributes

Possible values

Value Meaning
xfaNone (0) No specific attributes must be off in order to process files.
xfaReadOnly (1) Read-only attribute must be off.
xfaHidden (2) Hidden attribute must be off.
xfaSystem (4) System attribute must be off.
xfaVolume (8) Volume Label attribute must be off.
xfaFolder (16) The folder / directory attribute must be off.
xfaArchive (32) Archive bit attribute must be off.
xfaAlias (64) Alias attribute must be off.
xfaCompressed (2048) Compressed attribute must be off.

Default value

xfaVolume + xfaFolder

Applicable methods

Zip, Unzip, ListZipContents, PreviewFiles, RemoveFiles

Related topics

The RequiredFileAttributes property lets you limit the processing of files to only those files that have specific file
attributes on, as opposed to only processing files that don't have these attributes on.
If you want to create your own, special filters in order to limit which files are processed, you can use the
ZipPreprocessingFile or UnzipPreprocessingFile events to specifically exclude files (just set the excluded
parameter whenever you want to exclude a file).

FilesToProcess property

Description

The FilesToProcess property is used to provide a list of files to be processed by the Zip, Unzip, RemoveFiles,
PreviewFiles, ListZipContents and TestZipFile methods.
Wildcards can be used to match multiple files. If you set the ProcessSubfolders property to True, all subfolders will
also be scanned for matching files and folders.
When using the Zip or PreviewFiles methods, the FilesToProcess property must contain a list of files or folders to
zip up (or preview) that match files accessible on the current machine or network. For these methods, the files to
process can be specified either with absolute paths, relative paths or without paths. The manner that files are
specified in the FilesToProcess property determines what portion of the path will be stored in the zip file along with
the filename. See the controling how paths are stored topic for details.
When using the Unzip, RemoveFiles, ListZipContents or TestZipFile methods, the filenames you provide to the
FilesToProcess property must match with the path and filename information stored in the Zip file. If you are unsure
of what path information is stored in the zip file, set the PreservePaths property to False. This will cause all path
information stored in the zip file to be ignored, and will allow you to specify only filenames in the FilesToProcess
property.
If you leave the FilesToProcess property empty and use the Unzip, ListZipContents or the TestZipFile methods, all
the files in the zip file will be processed.

Data type

String. The FilesToProcess property is a single string that can contain multiple files and wildcards to process.
When specifying multiple files to process, each file must be separated with the CR character (ASCII 13), the LF
character (ASCII 10), the CR+LF characters or the vertical bar "|" character. For cleaner code, use the
AddFilesToProcess method when you need to specify multiple files in the FilesToProcess property – it
automatically handles the task of separating items with the return character.

Default value

Empty

Remarks

When using relative paths to zip or preview files, the paths must be relative to the application's current directory, or
the folder specified in the BasePath property if it has been set.

Applicable methods

Zip, Unzip, ListZipContents, PreviewFiles, RemoveFiles

Related topics

You can use the FilesToExclude property if you want to exclude specific filenames or paths from the list of files you
have specified in the FilesToProcess property.
To exclude files based on criteria other than filenames, refer to the filtering properties.

FilesToExclude property

Example

Description

The FilesToExclude property lets you exclude specific files or wildcards from the list of files to process provided to
the FilesToProcess property.
Files to process that match the files provided to the FilesToExclude property will be tagged as "excluded" when the
ZipPreprocessingFile or UnzipPreprocessingFile event is triggered, and will not be processed unless you change
the value of the excluded parameter to False.
The FilesToExclude property is used the same way as the FilesToProcess property:

· When using the Zip or the PreviewFiles method, files can be specified with absolute paths, relative paths or
without paths.

· When using the Unzip, RemoveFiles, ListZipContents or the TestZipFile method, the filenames you provide
to the FilesToExclude property must match with the path and filename information stored in the zip file.

· When specifying multiple files to exclude, each file must be separated with the carriage return (ASCII 13),
line feed (ASCII 10) character or the "|" character.

· There's an AddFilesToExclude method equivalent of the AddFilesToProcess method.
· You can use the "*" and "?" wildcards to exclude multiple files.

Data type

String

Default value

Empty

Remarks

When using relative paths, they must be relative to the application's current directory, or the folder specified in the
BasePath property if it has been set.

Applicable methods

Zip, Unzip, ListZipContents, PreviewFiles, RemoveFiles

Related topics

To exclude files based on criteria other than filenames, refer to the filtering properties.

MinDateToProcess property

Example

Description

The MinDateToProcess property is a filtering property that lets you limit the processing of files to only those files
that have a date and time stamp larger than or equal to a specified date and time. This property affects the list of
files specified in the FilesToProcess property.
Files that have a date and time smaller than the date and time specified in the MinDateToProcess property will be
tagged as "excluded" when the ZipPreprocessingFile or UnzipPreprocessingFile event occurs, and will not be
processed unless you change the value of the excluded parameter to False.
This property can be used in conjunction with other filtering properties. In particular, it can be used in conjunction
with the MaxDateToProcess property in order to provide a range of date and time stamps that should be
processed.

Data type

Date

Possible values

Dates can range from 01/01/1900 to 31/12/9999

Default value

01/01/1980 (All files qualify for processing)

Applicable methods

Zip, Unzip, ListZipContents, PreviewFiles, RemoveFiles

Related topics

The SkipIfOlderDate property lets you skip files about to be zipped that are older than the files already in the zip
file, or skip files about to be unzipped that are older than the files already existing in the unzipping location.

MaxDateToProcess property

Example

Description

The MaxDateToProcess property is a filtering property that lets you limit the processing of files to only those files
that have a date and time stamp smaller than or equal to a specified date and time. This property affects the list of
files specified in the FilesToProcess property.
Files that have a date and time larger than the date and time specified in the MaxDateToProcess property will be
tagged as "excluded" when the ZipPreprocessingFile or UnzipPreprocessingFile event occurs, and will not be
processed unless you change the value of the excluded parameter to False.
This property can be used in conjunction with other filtering properties. In particular, it can be used in conjunction
with the MinDateToProcess property in order to provide a range of date and time stamps that should be
processed.

Data type

Date

Possible values

Dates can range from 01/01/1900 to 31/12/9999

Default value

31/12/9999 (All files qualify for processing)

Applicable methods

Zip, Unzip, ListZipContents, PreviewFiles, RemoveFiles

Related topics

The SkipIfOlderDate property lets you skip files about to be zipped that are older than the files already in the zip
file, or skip files about to be unzipped that are older than the files already existing in the unzipping location.

MinSizeToProcess property

Example

Description

The MinSizeToProcess property is a filtering property that lets you limit the processing of files to only those files
that are larger than or equal to a specified file size. This property affects the list of files specified in the
FilesToProcess property.
Files that have a smaller file size (in bytes) than the amount specified MinSizeToProcess property will be tagged
as "excluded" when the ZipPreprocessingFile or UnzipPreprocessingFile event occurs, and will not be processed
unless you change the value of the excluded parameter to False.
This property can be used in conjunction with other filtering properties. In particular, it can be used in conjunction
with the MaxSizeToProcess property in order to provide a range of file sizes that should be processed.

Data type

Long Integer

Possible values

0 to 4294967295 (or 0 to 2147483647 for languages with signed long integers such as VB)

Default value

0 (No lower file size limit, all files qualify for processing)

Applicable methods

Zip, Unzip, ListZipContents, PreviewFiles, RemoveFiles

Related topics

None

MaxSizeToProcess property

Example

Description

The MaxSizeToProcess property is a filtering property that lets you limit the processing of files to only those files
that are smaller than or equal to a specified file size. This property affects the list of files specified in the
FilesToProcess property.
Files that have a larger file size (in bytes) than the amount specified MaxSizeToProcess property will be tagged as
"excluded" when the ZipPreprocessingFile or UnzipPreprocessingFile event occurs, and will not be processed
unless you change the value of the excluded parameter to False.
Setting this property to 0 will eliminate checking for a maximum size.
This property can be used in conjunction with other filtering properties. In particular, it can be used in conjunction
with the MinSizeToProcess property in order to provide a range of file sizes that should be processed.

Data type

Long Integer

Possible values

0 to 4294967295 (or 0 to 2147483647 for languages with signed long integers such as VB)

Default value

4294967295 (No upper file size limit, all files qualify for processing)

Applicable methods

Zip, Unzip, ListZipContents, PreviewFiles, RemoveFiles

SplitSize property

Description

The SplitSize property lets you create zip files in multiple parts located in the same place that are no larger than a
specific file size. The resulting parts are identical to spanned zip files, except that they are not located on different
removable media disks and each part has a different filename.
For multi-part zip files, the first part of the zip file usually has the ".zip" filename extension, while the remaining
parts have extensions named ".z01", ".z02", and so on.
To create zip files in multiple parts, set the SplitSize property to the maximum size, in bytes, that you want each
part to have, and run the Zip method. Zipping will start, as usual, in the target zip file specified in the ZipFilename
property. If the resulting zip file reaches the maximum zip file size, it will be closed and zipping will continue in the
next zip file part, with the filename extension ".z01". None of the parts will exceed the number of bytes specified in
the SplitSize property, but some parts may be smaller than the maximum size.
Setting the SplitSize property to 0 disables the creation of multi-part zip files in the same location, but does not
affect the outcome of the SpanMultipleDisks property.

Data type

Long Integer

Possible values

0 to 4294967295 (or 0 to 2147483647 for languages with signed long integers such as VB)

Default value

0

Remarks

You can use the SplitSize property in conjunction with the SpanMultipleDisks property to create spanned zip files
that are limited to a specific size and do not necessarily fill up the entire removable media disk.

Applicable methods

Zip

Related topics

None

PreservePaths property

Description

The PreservePaths property allows you to determine whether path information is stored in (or retrieved) from the
zip file.
When using the Zip method, setting PreservePaths to False will cause all path information associated with a file to
be discarded, and will cause only the file's filename to be stored in the zip file. Setting PreservePaths to True will
cause path information to be stored in the zip file along with each file's filename. See the controling how paths are
stored topic for more information on storing paths when using the Zip method.
When using the Unzip method, or other methods that require files to be specified in the FilesToProcess property,
setting PreservePaths to False will cause Xceed Zip to ignore any path information stored in the zip file. When this
is done, you must specify the files to process only with filenames (no path information must be specified)
otherwise no files will be matched for processing. When PreservePaths is set to True, the FilesToProcess property
must contain path and filename information that matches path and filename information stored in the zip file.
Also when using the unzip method: If PreservePaths is set to True, pathnames that have been stored in the zip file
along with each file's filename will be used to determine where the files will be unzipped to. The stored pathnames
and files will be created inside the destination unzipping folder specified with the UnzipToFolder property. If
PreservePaths is set to False, all files will be directly unzipped (without any subfolders being created) to the
destination unzipping folder.

Data type

Boolean

Default value

True

Applicable methods

Zip, Unzip, PreviewFiles

Related topics

None

ProcessSubfolders property

Description

The ProcessSubfolders property is used to determine whether subfolders are processed or not.
When the ProcessSubfolders property is set to True, you can zip or unzip entire folder structures. For example:
Specifying "C:\WINDOWS*" in the FilesToProcess property and setting the ProcessSubfolders property to True will
cause the Zip method to zip up the entire contents of the "C:\WINDOWS" folder, including the SYSTEM folder and all
other files and folders that can be found in there.
When the ProcessSubfolders property is set to False, subfolders will not be processed.

Data type

Boolean

Default value

True

Remarks

Use "*" to match all files in a given folder. Old-style DOS wildcards such as "*.*" do not work in 32-bit operating
systems (Windows 95/98/NT) the way they do in DOS. In Windows 95/98/NT, "*.*" will only match files that have a
"." in them.

Applicable methods

Zip, Unzip, ListZipContents, PreviewFiles, RemoveFiles

Related topics

The controling how paths are stored topic provides information on how to control what portions of a file's path (if
any) are stored in the zip file.

SkipIfExisting property

Description

The SkipIfExisting property allows you to process only files that do not already exist in the destination unzipping
folder or, when zipping, the destination zip file.
When using the Zip method, setting SkipIfExisting to True will cause files that already exist in the destination zip
file to be skipped (excluded from processing), thus leaving the already existing file(s) intact.
The same idea applies when using the Unzip method: setting SkipIfExisting to True will cause files that already
exist in the destination unzipping folder to be skipped.
 Files that have been excluded because of the SkipIfExisting property will be tagged as "excluded" when the
ZipPreprocessingFile or UnzipPreprocessingFile event is triggered, and will not be processed unless you change
the value of the excluded parameter to False.

Data type

Boolean

Default value

False

Applicable methods

Zip, Unzip

Related topics

See the SkipIfNotExisting, SkipIfOlderDate and SkipIfOlderVersion properties for variations on this theme.

SkipIfNotExisting property

Description

The SkipIfNotExisting property allows you to process only files that already exist in the destination unzipping folder
or, when zipping, the destination zip file.
When using the Zip method, setting SkipIfNotExisting to True will cause files that do not already exist in the
destination zip file to be skipped (excluded from processing). This results in a zipping process that only replaces
files that exist in the zip file but does not add any new files.
The same idea applies when using the Unzip method: setting SkipIfExisting to True will cause files that do not
already exist in the destination unzipping folder to be skipped.
Files that have been excluded because of the SkipIfNotExisting property will be tagged as "excluded" when the
ZipPreprocessingFile or UnzipPreprocessingFile event is triggered, and will not be processed unless you change
the value of the excluded parameter to False.

Data type

Boolean

Default value

False

Applicable methods

Zip, Unzip

Related topics

See the SkipIfExisting, SkipIfOlderDate and SkipIfOlderVersion properties for variations on this theme.

SkipIfOlderDate property

Description

The SkipIfOlderDate property allows you to process only files that have a date and time stamp greater or equal to
the date and time stamp of corresponding files already in the destination unzipping folder or, when zipping, the
destination zip file.
When using the Zip method, setting SkipIfOlderDate to True will compare the date and time stamps of files about
to be zipped with the date and time stamp of corresponding files already in the destination zip file. Files with an
older date and time stamp than those already in the zip file will be skipped (excluded from processing).
The same idea applies when using the Unzip method: setting SkipIfOlderDate to True will compare the date and
time stamps of files about to be unzipped with the date and time stamp of corresponding files already in the
destination unzipping folder. Files with an older date and time stamp than those already in the destination
unzipping folder will be skipped.
Files that have been excluded because of the SkipIfOlderDate property will be tagged as "excluded" when the
ZipPreprocessingFile or UnzipPreprocessingFile event is triggered, and will not be processed unless you change
the value of the excluded parameter to False.

Data type

Boolean

Default value

False

Applicable methods

Zip, Unzip

Related topics

See the SkipIfExisting, SkipIfNotExisting and SkipIfOlderVersion properties for variations on this theme.

SkipIfOlderVersion property

Description

The SkipIfOlderVersion property allows you to process only files that have a version number greater or equal to
the version number of corresponding files already in the destination unzipping folder or, when zipping, the
destination zip file. The version number is determined by consulting the version information resource usually
embedded in executable files of various kinds, such as .EXEs, .DLLs and .OCXs.
When using the Zip method, setting SkipIfOlderVersion to True will compare the version numbers of files about to
be zipped with the version numbers corresponding files already in the destination zip file. Files with an older
version number (or no version number) than those already in the zip file will be skipped (excluded from
processing).
The same idea applies when using the Unzip method: setting SkipIfOlderVersion to True will compare the version
numbers of files about to be unzipped with the version numbers of corresponding files already in the destination
unzipping folder. Files with an older version number (or no version number) than those already in the destination
unzipping folder will be skipped.
Files that have been excluded because of the SkipIfOlderVersion property will be tagged as "excluded" when the
ZipPreprocessingFile or UnzipPreprocessingFile event is triggered, and will not be processed unless you change
the value of the excluded parameter to False.

Data type

Boolean

Default value

False

Applicable methods

Zip, Unzip

Related topics

See the SkipIfExisting, SkipIfNotExisting and SkipIfOlderDate properties for variations on this theme.

SpanMultipleDisks property

Description

The SpanMultipleDisks property allows you to control whether spanned zip files should be created if the drive or
disk where the zip file is being written gets full. This property applies only when using the Zip method.

Data type

xcdDiskSpanning

Possible values

Value Meaning
xdsNever (0) If the drive or disk where the zip file is being written gets full, zipping will be

aborted and the xerWriteZipFile error will be returned.
xdsAlways (1) If the drive or disk where the zip file is being written gets full, the InsertDisk event

will be triggered, allowing your application to perform various actions, including
the possibility to query for a new disk to be inserted.

xdsAutoDetect (2) If the drive or disk where the zip file is being written is considered to be a
removable media device by Windows, the InsertDisk event will be triggered when
the drive gets full. If it is not considered to be a removable media device by
Windows, then zipping will be aborted and the xerWriteZipFile error will be
returned. Note: CD-ROMs, floppy disks, Superdisks™, Zip™ and Jazz™ drives
are all considered removable media devices, but not when they are accessed
through a network. If you are using one of these devices through a network, use
the xdsAlways setting instead of the xdsRemovableDrivesOnly setting.

Default value

xdsAutoDetect

Remarks

When SpanMultipleDisks is set to xdsAlways or xdsRemovableDrivesOnly and that a removable drive is being
written to, you can only use the Zip method to create a new spanned zip file. Once the spanned zip file has been
created and contains files, no more files can be added to, or replaced in it.
When creating spanned zip files, the zip format dictates that the directory of files contained in the zip file is located
on the last disk of the disk set. That is why the last disk must always be inserted before the zip file can be
unzipped, listed or verified with the Unzip, ListZipContents or TestZipFile methods. If the last disk is not present in
the drive when trying to process a spanned zip file, the InsertDisk event will be triggered so your application can
query for the last disk to be inserted. In some cases, such as when there are very many files in the spanned zip
file, the directory may be both on the last disk, and the next-to-last disk. Xceed Zip will automatically trigger the
InsertDisk twice, once for each disk.
When creating spanned files on devices considered to be removable media by Windows, the volume label of the
media is changed to indicate the number of the diskette in the zip file set.
Setting the UseTempFile property to True will allow spanned zip files to be created more efficiently when writing to
slow removable media – its use is recommended.
It is a good idea to inform users of your application to label diskettes when creating spanned zip files. A good time
to do this is when the InsertDisk event is triggered and your application displays a dialog box requesting the next
disk.

Applicable methods

Zip

Related topics

The SplitSize property lets you create spanned zip files that are located in the same place, as opposed to creating
spanned zip files located on different disks. It also lets you limit the amount of data written to each disk, if you don't
necessarily want to completely fill up each disk.

TempFolder property

Description

The TempFolder property lets you control the location where Xceed Zip will create a temporary file to work with
when running the Zip or RemoveFiles methods.
The TempFolder property requires a path only (no filename) and does not require a trailing backslash.
If the TempFolder property is left empty, a temporary file will be created in the Windows temp folder.
The UseTempFile property allows you to control, in most situations, whether or not a a temporary file should be
used.

Data type

String

Default value

Empty (use Windows temp folder)

Remarks

It is recommended that you specify a path for the TempFolder property by using an absolute path. If you use a
relative path, be cautious because the path must be relative to the application's current directory – which often is
tricky to work with.

Applicable methods

Zip, RemoveFiles

UseTempFile property

Description

The UseTempFile property influences whether or not the Zip method will use a temporary file when creating a new
zip file or when writing to an existing zip file.
A temporary file is useful in order to help keep the zip file currently being written to in a consistent state in the
event that the current operation fails, is abnormally aborted, or a system crash occurs. A temporary file is also
useful when writing to zip files located on write-once media (CD-WORM) or across a network because the zip file
is created in the temporary file (usually on a local drive) and written to the destination drive or network location
only when the zipping operation is complete. A temporary file also speeds up the zipping operation when creating
spanned zip files.
Setting the UseTempFile property to True will cause Xceed Zip to always create a temporary file. Setting it to False
will cause Xceed Zip to avoid creating a temporary file if possible. Even if UseTempFile is set to False, a
temporary file is always created when replacing a file in the destination zip file (for example, you zip up a file that
already exists in the destination zip file, causing the file already in the zip file to be overwritten.)

Data type

Boolean

Default value

True

Remarks

A temporary file is always created when the RemoveFiles method is used. The UseTempFile property must
therefore be set to True.
When an operation that causes a temporary file to be created has completed, the temporary file will be removed –
even if an error occurs. However, if a system crash or reboot occurs before the operation completes, the
temporary file will be left lying about, and must be removed manually.

Applicable methods

Zip, RemoveFiles

UnzipToFolder property

Description

The UnzipToFolder property is used by the Unzip method to determine where to unzip files to.
You can specify an absolute path, a relative path, or you can leave the UnzipToFolder property empty. If left empty,
files will be unzipped into the application's current directory. If a relative path is used, the path must be relative to
the application's current directory.
As described in the brief introduction to the zip format topic, files that are stored in a zip file can contain path
information. This path information is always appended to the path indicated in the UnzipToFolder property unless
the PreservePaths property has been set to False. In other words, if a file is stored in the zip file with a path and
filename of "PICTURES\PICTURE1.BMP", and the UnzipToFolder property is set to "C:\INCOMING", then Xceed Zip
will create a folder called "PICTURES" and unzip the file as "C:\INCOMING\PICTURES\PICTURE1.BMP". If
PreservePaths is set to False, then Xceed Zip will unzip the file as "C:\INCOMING\PICTURE1.BMP".
The UnzipToFolder property requires a path only (no filename) and does not require a trailing backslash.

Data type

String

Default value

Empty

Remarks

The Unzip method will automatically create any folders that don't already exist in order to be able to unzip into the
folder specified in the UnzipToFolder property.

Applicable methods

Unzip

ZipFilename property

Description

The ZipFilename property must specify the zip file to be used by the Xceed Zip component's methods.
You can specify the zip file name using an absolute path, a relative path, or no path at all. If no path is provided,
the zip file will be created or searched for in the application's current directory. If a relative path and filename are
used, the path must be relative to the application's current directory.
The zip file name can be any valid filename with any extension. The ".ZIP" filename extension is recommended
because it makes the file easily identifiable as a zip file.
Examples of valid ZipFilename property settings are: "C:\OUTGOING\PICTURES.ZIP", "..\MY ZIP FILE.ZIP",
"BACKUP.DAT", "\\MAINSERVER\PUBLICSHARE\DATA FILES\BACKUP 1491.ZIP" and "TEST".

Data type

String

Default value

Empty

Remarks

If this property is left empty, Xceed Zip methods will return the xerOpenZipFile error.

Applicable methods

All methods except AddFilesToProcess and AddFilesToExclude

CurrentOperation property

Description

The CurrentOperation property indicates what the current instance of the Xceed Zip control is doing.
For example, when you are zipping files, consulting the CurrentOperation property will yield the xcoZipping
constant.
This property is read-only and is not browsable by an object browser.

Data type

xcdCurrentOperation

Possible values

Value Meaning
xcoIdle (0) No method currently executing
xcoPreviewing (1) Executing the PreviewFiles method
xcoListing (2) Executing the ListZipContents method
xcoZipping (3) Executing the Zip method
xcoUnzipping (4) Executing the Unzip method
xcoRemoving (5) Executing the RemoveFiles method
xcoTestingZipFile (6) Executing the TestZipFile method

Default value

xcdIdle

Applicable methods

All methods except AddFilesToProcess and AddFilesToExclude

ExtraHeaders property

Description

The ExtraHeaders property lets you control what type of supplemental file information you want stored in a zip file
or retrieved from a zip file. This property applies to the Zip and Unzip methods only.

Data type

xcdExtraHeader

Possible values

Value Meaning
xehPkwareFileTime (1) Store/Retrieve extended time-stamp information about a file using a header

format defined by PKWare®. Time-stamp information is stored in Windows NT
format and includes the last modification date and time, the last accessed date
and time and the creation date and time.

xehInfoZipFileTime (2) Store/Retrieve extended time-stamp information about a file using a header
format defined by the Info-Zip group. Time-stamp information is stored in Unix
format and includes the last modification date and time, the last accessed date
and time and the creation date and time.

xehSecurityDescriptor (4) Store/Retrieve the Windows NT file security information header.
xehUnicode (8) Store/Retrieve the Unicode filename header.

Default value

xehInfoZipFileTime + xehUnicode

Applicable methods

Zip, Unzip, Convert

ListingFile event

VB example Delphi example

Description

The ListingFile event is triggered once for each file in a zip file that is being listed as a result of calling the
ListZipContents method.
The file information provided by the ListingFile event's parameters is not modifiable.

Declaration
Event ListingFile(sFilename As String, sComment As String, lSize As Long,
lCompressedSize As Long, nCompressionRatio As Integer, xAttributes As
xcdFileAttributes, lCRC As Long, dtLastModified As Date, dtLastAccessed As Date,
dtCreated As Date, xMethod As xcdCompressionMethod, bEncrypted As Boolean,
nDiskNumber As Long, bExcluded As Boolean, xReason As xcdSkippingReason)
Parameters

Parameter Description
sFilename The path and filename of the file being listed, exactly as it is stored in the zip file.
sComment The file's comment.
lSize The file's original uncompressed size in bytes.
lCompressedSize The file's compressed size.
nCompressionRatio The compression ratio achieved for this file.
xAttributes The file's attributes.
lCRC The file's uncompressed data CRC checksum.
dtLastModified The last modification date and time stamp.
dtLastAccessed The last accessed date and time stamp.
dtCreated The creation date and time stamp.
xMethod The compression method
bEncrypted Is this an encrypted file?
nDiskNumber When dealing with spanned zip files, the disk this file is located on.
bExcluded Would this file be processed or excluded if the Unzip method were to be called

with the same property settings as when the ListZipContents method was called?
xReason If it will be excluded, why?

Applicable methods

ListZipContents

PreviewingFile event

Description

The PreviewingFile event is triggered once for each file that is being listed as a result of calling the PreviewFiles
method.
The file information provided by the PreviewingFile event's parameters is not modifiable.

Declaration
Event PreviewFiles(sFilename As String, sSourceFilename As String, lSize As Long,
xAttributes As xcdFileAttributes, dtLastModified As Date, dtLastAccessed As Date,
dtCreated As Date, bExcluded As Boolean, xReason As xcdSkippingReason)
Parameters

Parameter Description
sFilename The path and filename of the file being listed, exactly as it would be stored in a

zip file if the Zip method were to be executed instead of the PreviewFiles method.
sSourceFilename The real path and filename of the file being listed.
lSize The file's size in bytes.
xAttributes The file's attributes.
dtLastModified The last modification date and time stamp.
dtLastAccessed The last accessed date and time stamp.
dtCreated The creation date and time stamp.
bExcluded Would this file be processed or excluded if the Zip method were to be called with

the same property settings as when the PreviewFiles method was called?
xReason If it will be excluded, why?

Applicable methods

PreviewFiles

InsertDisk event

Description

The InsertDisk event is triggered whenever a new or different disk is required to be inserted in a drive so that the
current operation can proceed.
When using the Zip method and the SpanMultipleDisks property is set to span disks, this event is triggered when
the current disk being written to gets full. This event allows you to prompt the end-user to insert a new disk. The
nDiskNumber parameter provides the number of the current disk being requested. After the user has been queried
to insert a new disk, the xAction parameter, which is modifiable, must be set to xacRetry. If it is left to the default
value, which is xacAbort, the zipping operation will be aborted. Your application should inform the user to label
each disk with the appropriate disk number as soon as it has been filled. If the same disk is still in the drive after
the xAction parameter has been set to xacRetry and the InsertDisk event has completed, the InsertDisk event will
be triggered again.
When using the Unzip, ListZipContents or TestZipFile methods and a spanned zip file is being read, this event will
be triggered whenever data must be read from a disk in the disk set other than the one currently in the drive. The
nDiskNumber parameter provides the number of the current disk being requested. After the user has been queried
to insert a new disk, the xAction parameter, which is modifiable, must be set to xacRetry. If it is left to the default
value, which is xacAbort, the unzipping operation will be aborted. If the wrong disk is inserted, or the same disk is
still in the drive after the xAction parameter has been set to xacRetry and the InsertDisk event has completed, the
InsertDisk event will be triggered again.

Declaration
Event InsertDisk(nDiskNumber As Long, bDiskInserted As Boolean)
Parameters

Parameter Description
nDiskNumber The number of the requested disk. If nDiskNumber = xcdLastDisk (0) then the

last disk of the disk set is requested.
bDiskInserted Set this to True to confirm that you have requested the insertion of the

appropriate disk. If you leave it to its default value of False, the current operation
will terminate and return xerInsertDisk abort.

Applicable methods

Zip, Unzip, ListZipContents, TestZipFile

ZipPreprocessingFile event

Description

The ZipPreprocessingFile event provides the opportunity to view and change a file's information before it is
zipped, and to make the final decision about whether the file should be zipped or excluded from being zipped. This
event is triggered right before a file is opened for zipping.
Not all file information provided by the ZipPreprocessingFile event's parameters is modifiable. The table below
provides a list of parameters provided by ZipPreprocessingFile and shows you which ones can be modified.

Declaration

Parameters in bold are modifiable
Event ZipPreprocessingFile(sFilename As String, sComment As String, sSourceFilename
As String, lSize As Long, xAttributes As xcdFileAttributes, dtLastModified As Date,
dtLastAccessed As Date, dtCreated As Date, xMethod As xcdCompressionMethod,
bEncrypted As Boolean, sPassword As String, bExcluded As Boolean, xReason As
xcdSkippingReason, bExisting As Boolean)
Parameters

Parameter (Modifiable) Description
sFilename (YES) The file's path and filename, exactly as it will be stored in the zip file.
sComment (YES) The file's comment.
sSourceFilename The real path and filename of the file about to be zipped.
lSize The file's size in bytes
xAttributes The file's attributes
dtLastModified The last modification date and time stamp.
dtLastAccessed The last accessed date and time stamp.
dtCreated The creation date and time stamp.
xMethod (YES) The compression method
bEncrypted (YES) Is this file going to be encrypted?
sPassword (YES) If so, it will be encrypted with this password.
bExcluded (YES) Will this file be zipped or excluded?

Applicable methods

Zip

UnzipPreprocessingFile event

Description

The UnzipPreprocessingFile event provides the opportunity to view and change a file's information before it is
unzipped, and to make the final decision about whether the file should be unzipped or excluded from being
unzipped. This event is triggered right before the output file is opened for unzipping.
Not all file information provided by the UnzipPreprocessingFile event's parameters is modifiable. The table below
provides a list of parameters provided by UnzipPreprocessingFile and shows you which ones can be modified.

Declaration

(Parameters in bold are modifiable)
Event UnzipPreprocessingFile(sFilename As String, sComment As String, sDestFilename
As String, lSize As Long, lCompressedSize As Long, xAttributes As xcdFileAttibutes,
lCRC As Long, dtLastModified As Date, dtLastAccessed As Date, dtCreated As Date,
xMethod As xcdCompressionMethod, bEncrypted As Boolean, sPassword As String,
nDiskNumber As Long, bExcluded As Boolean, xReason As xcdSkippingReason, bExisting
As Boolean, xDestination As xcdUnzipDestination)
Parameters

Parameter (Modifiable) Description
sFilename The file's path and filename, exactly as it is currently stored in the zip file.
sComment The file's comment.
sDestFilename (YES) The real path and filename of the destination file about to be unzipped to.
lCompressedSize The file's compressed size, in bytes
xAttributes The file's attributes
lCRC The file's uncompressed data CRC checksum.
dtLastModified The last modification date and time stamp.
dtLastAccessed The last accessed date and time stamp.
dtCreated The creation date and time stamp.
xMethod The compression method
bEncrypted Is this file encrypted?
sPassword (YES) If so, it will be decrypted with this password.
nDiskNumber When dealing with spanned zip files, the disk this file is located on
bExcluded (YES) Will this file be unzipped or excluded?
xReason If the bExcluded flag (above) was True when the UnzipPreprocessingFile was

triggered, this parameter contains the reason that the file was marked for
excluding.

bExisting Indicates whether the destination file about to be unzipped to already exists.
xDestination (YES) Determines whether a file is unzipped to disk or to memory.

Applicable methods

Unzip

RemovingFile event

Description

The RemovingFile event is triggered once for each file that is about to be deleted from the zip file as a result of
executing the RemoveFiles method. The RemovingFile event occurs just before the file is deleted.
None of the parameters provided by the RemovingFile event are modifiable.

Declaration
Event RemovingFile(sFilename As String, sComment As String, lSize As Long,
lCompressedSize As Long, xAttributes As xcdFileAttributes, lCRC As Long,
dtLastModified As Date, dtLastAccessed As Date, dtCreated As Date, xMethod As
XceedZipLibCtl.xcdCompressionMethod, bEncrypted As Boolean)
Parameters

Parameter Description
sFilename The path and filename of the file being deleted, exactly as it is stored in the zip

file.
sComment The file's comment.
lSize The file's original uncompressed size in bytes.
lCompressedSize The file's compressed size.
xAttributes The file's attributes.
lCRC The file's uncompressed data CRC checksum.
dtLastModified The last modification date and time stamp.
dtLastAccessed The last accessed date and time stamp.
dtCreated The creation date and time stamp.
xMethod The compression method
bEncrypted Is this an encrypted file?

Applicable methods

RemoveFiles

TestingFile event

Description

The TestingFile event is triggered once for each file that has been verified as a result of calling the TestZipFile
method. This event is triggered when verification is complete, and provides the integrity status and complete
information on the verified file.
None of the parameters provided by the TestingFile event are modifiable.

Declaration
Event TestingFile(sFilename As String, sComment As String, lSize As Long,
lCompressedSize As Long, nCompressionRatio As Integer, xAttributes As
xcdFileAttributes, lCRC As Long, dtLastModified As Date, dtLastAccessed As Date,
dtCreated As Date, xMethod As xcdCompressionMethod, bEncrypted As Boolean,
nDiskNumber As Long)
Parameters

Parameter Description
sFilename The path and filename of the file being verified, exactly as it is stored in the zip

file.
sComment The file's comment.
lSize The file's original uncompressed size in bytes.
lCompressedSize The file's compressed size.
xAttributes The file's attributes.
lCRC The file's uncompressed data CRC checksum.
dtLastModified The last modification date and time stamp.
dtLastAccessed The last accessed date and time stamp.
dtCreated The creation date and time stamp.
xMethod The compression method
bEncrypted Is this an encrypted file?
xIntegrity The integrity of the file: Is it unzippable or is it corrupted?

Applicable methods

TestZipFile

FileStatus event

Description

The FileStatus event provides a status report on the processing of a given file. It is triggered during the processing
of a file as a result of calling the Zip, Unzip or TestZipFile methods.
The FileStatus event is triggered for every 32K of uncompressed data that has been processed for the current file.
If the file size is less than 32K, this event will only be triggered once. This event provides various
statistics/information related to the processing of a file.
None of the parameters provided by the FileStatus event are modifiable.

Declaration
Event FileStatus(sFilename As String, lSize As Long, lCompressedSize As Long,
lBytesProcessed As Long, nBytesPercent As Integer, nCompressionRatio As Integer,
bFileCompleted As Boolean)
Parameters

Parameter Description
sFilename The path and filename of the file processed. When zipping, this is the path and

filename of the file exactly as it is being stored in the zip file. When unzipping or
testing, this is the path and filename of the file exactly as it is currently stored in
the zip file.

lSize The file's uncompressed size, in bytes
lCompressedSize The file's compressed size, in bytes
lBytesProcessed The amount of uncompressed bytes processed so far
nBytesPercent The completion percentage of this file (from 0% to 100%) based on the amount of

uncompressed bytes processed.
nCompressionRatio When zipping, this is the compression ratio that has been achieved so far for this

file. When unzipping, this is the compression ratio of the file as it is stored in the
zip file.

bFileCompleted This flag is set to True when the current file has been completely processed
succesfully.

Remarks

When a file has been completely processed, the iBytesProcessed parameter equals the lSize parameter.

Applicable methods

Zip, Unzip, TestZipFile

Related topics

To get statistics on the entire group of files being processed, use the GlobalStatus event.

GlobalStatus event

Description

The GlobalStatus event provides a status report on the group of files currently being processed. It is triggered
throughout the execution of the Zip, Unzip or TestZipFile methods.
The GlobalStatus event is triggered for every 32K of uncompressed data that has been processed for the entire
group of files being processed. This event provides various statistics related to the group of files being processed.
None of the parameters provided by the GlobalStatus event are modifiable.

Declaration
Event GlobalStatus(lFilesTotal As Long, lFilesProcessed As Long, lFilesSkipped As
Long, nFilesPercent As Integer, lBytesTotal As Long, lBytesProcessed As Long,
lBytesSkipped As Long, nBytesPercent As Integer, lBytesOutput As Long,
nCompressionRatio As Integer)
Parameters

Parameter Description
lFilesTotal The total number of files to process
lFilesProcessed The number of files that have been processed so far.
nFilesSkipped The number of files that have been skipped so far.
nFilesPercent The completion percentage (0% to 100%) based on how many files have been

processed so far.
lBytesTotal The total number of bytes to process for the entire group of files.
lBytesProcessed The total number of bytes that have been processed so far for the entire group of

files.
lBytesSkipped The total number of bytes that have not been processed due to files that have

been skipped.
lBytesPercent The completion percentage (0% to 100%) based on the amount of bytes

processed so far.
lBytesOutput When unzipping, this represents the total number of bytes that have been output

to the destination unzipping location. The value is undefined when zipping.
nCompressionRatio When zipping, this is the compression ratio that has been achieved so far for the

entire group of files being zipped. When unzipping, this is the compression ratio
of the entire group of files being unzipped.

Remarks

When running the ListZipContents method, only the parameters that deal with files are available. The parameters
that deal with bytes are not applicable.

Applicable methods

Zip, Unzip, TestZipFile

Related topics

To get statistics on individual files, as opposed to the entire group of files being processed, use the FileStatus
event.

DiskNotEmpty event

Description

The DiskNotEmpty event is triggered when creating a spanned zip file and a non-empty disk is present or inserted
into the removable media drive. This event is triggered only once per disk, right after the disk was requested by
the InsertDisk event, but before writing any data to the disk.
The DiskNotEmpty event gives the host application a chance to perform various actions which might be necessary
when a non-empty disk is present in the drive. The xNotEmptyAction parameter can be used when standard
default actions to be taken (see below), or you may provide code for this event which performs custom actions.
For example, you may want to create a separate "README.TXT" file or other data files on the disk before the actual
zip file fills the disk space.

Declaration
Event DiskNotEmpty(xNotEmptyAction As xcdNotEmptyAction)
Parameters

Parameter (Modifiable) Description
xNotEmptyAction (YES) The action to take.

Set it to xnaErase to erase the disk.
Set it to xnaAppend to leave the files already on the disk alone, but fill up any
remaining space with the zip file.
Set it to xnaAskAnother to instruct the library to ask for another disk by triggering
the InsertDisk event.
Set it to xnaAbort to instruct the library to abort the current zipping operation.

Applicable methods

Zip

ProcessCompleted event

Description

The ProcessCompleted event is triggered whenever an Xceed Zip method has completed its processing. This
event provides statistics about the completed operation similar to those provided by the GlobalStatus event.
The parameters provided by the ProcessCompleted event are not modifiable.

Declaration
Event ProcessCompleted(lFilesTotal As Long, lFilesProcessed As Long, lFilesSkipped
As Long, lBytesTotal As Long, lBytesProcessed As Long, lBytesSkipped As Long,
lBytesOutput As Long, nCompressionRatio As Integer, xResult As xcdError)
Parameters

Parameter Description
lFilesTotal The total number of files that were matched by the FilesToProcess property. For

the ListZipContents and PreviewFiles mtehods, this is the only parameter among
the first three listed here that has any meaning.

lFilesProcessed The number of files that were actually processed. Does not include files that were
skipped for any reason.

nFilesSkipped The number of files that were skipped. Normally, lFilesProcessed + lFilesSkipped
= lFilesTotal.

lBytesTotal The total number of bytes for all the files that were matched by the
FilesToProcess property.

lBytesProcessed The total number of bytes that have were actually processed.
lBytesSkipped The total number of bytes that have not been processed due to files that have

been skipped. Normally, lBytesProcessed + lBytesSkipped = lBytesTotal.
lBytesOutput When zipping, this represents the total number of bytes that have been written to

the zip file. When unzipping, this represents the total number of bytes that have
been output to the destination unzipping location.

nCompressionRatio When zipping, this is the compression ratio that has been achieved so far for the
entire group of files being zipped. When unzipping, this is the compression ratio
of the entire group of files being unzipped.

xResult The result code returned by the method.

Remarks

In your handler for the ProcessCompleted event, the CurrentOperation property allows you to find out which
method just completed.

Applicable methods

All methods except the AddFilesToProcess and AddFilesToExclude methods.

ZipComment event

Description

The ZipComment event is triggered right before the first file is processed as a result of a call to the Zip, Unzip or
ListZipContents methods. The event provides the Zip file's "zip comment" - a string or data block that can be up to
64K of uncompressed data. The zip comment is usually useful for providing a short comment about the entire zip
file.
When zipping, the sComment parameter provided by this event can be modified in order to change or add a zip
file comment.

Declaration

(Parameters in bold are modifiable)
Event ZipComment(sComment As String)
Parameters

Parameter (Modifiable) Description
sComment (YES) The zip file's comment (modifiable when running the Zip method)

Applicable methods

Zip, Unzip or ListZipContents

QueryMemoryFile event

Description

The QueryMemoryFile event is triggered when the Zip method is called, and allows you to zip up data directly from
memory into a file entry in the zip file. You can cause the QueryMemoryFile event to be triggered multiple times if
you have more than one file you wish to zip up directly from memory.
Each time the QueryMemoryFile event is triggered, you must provide a filename to give the data you are zipping
up from memory, and you can also specify file attributes, a file comment, and other file information for the data.
Set the QueryMemoryFile event's bFileProvided flag to true if you do indeed have a file to zip up directly from
memory. Whenever this flag is set to True, the QueryMemoryFile event will be triggered again, so you can provide
another filename to zip up. Set the flag to False when you do not have any more files to zip up directly from
memory.
If you don't write a handler for the QueryMemoryFileEvent, no files will be zipped directly from memory because
the default value for the bFileProvided flag is False.
The actual data for each file to zip up from memory must be provided later, when the ZippingMemoryFile event is
triggered.

Declaration

(Parameters in bold are modifiable)
Event QueryMemoryFile(lUserTag As Long, sFilename As String, sComment As String,
xAttributes As xcdFileAttributes, dtLastModified As Date, dtLastAccessed As Date,
dtCreated As Date, bEncrypted As Boolean, sPassword As String, bFileProvided As
Boolean)
Parameters

Parameter (Modifiable) Description
lUserTag (YES) A user defined tag you can specify. This tag is provided to you later, when the

ZippingMemoryFile event is triggered. If you don't explicitly set this tag to your
own value, it starts at 0 and is incremented when the next QueryMemoryFile
event is triggered.

sFilename (YES) The file to create in the zip file which will contain the data to be compressed
directly from memory.

sComment (YES) A comment for the file.
xAttributes (YES) The file's attributes.
dtLastModified (YES) The file's last modification date and time.
dtLastAccessed (YES) The file's last accessed date and time.
dtCreated (YES) The file's creation date and time.
bEncrypted (YES) Should this file be encrypted?
sPassword (YES) Use this password to encrypt the file.
bFileProvided (YES) Flag informing Xceed Zip that you have a file to zip up from memory.

Applicable methods

Zip

ZippingMemoryFile event

Description

The ZippingMemoryFile event is triggered so that you can provide the data of a file that is being zipped from
memory. The ZippingMemoryFile event is triggered at least once for each file that you have specified with the
QueryMemoryFile event.

Declaration

(Parameters in bold are modifiable)
Event ZippingMemoryFile(lUserTag As Long, sFilename As String, vaDataToCompress As
Variant, bEndOfData As Boolean)
Parameters

Parameter (Modifiable) Description
lUserTag This is the value of the lUserTag parameter you specified when the

QueryMemoryFile event was triggered.
sFilename This is the value of the sFilename parameter you specified when the

QueryMemoryFile event was triggered.
baDataToCompress (YES) This is where you provide the data to zip up.
bEndOfData (YES) Set this to True if the entire data to compress is provided to the

baDataToCompress parameter. When dealing with streaming data, or if you
aren't able to provide the entire data for the current file being zipped up from
memory, set this parameter to False. This will cause the ZippingMemoryFile
event to be triggered again (with the same lUserTag and sFilename parameters)
so that you can provide more data. Set bEndOfData to True when you have
finished providing data to zip up from memory for the current file.

Applicable methods

Zip

UnzippingMemoryFile event

Description

The UnzippingMemoryFile event is triggered to provide you with the data of a file that is being unzipped to
memory. The UnzippingMemoryFile event is only triggered if you have specified xudMemory or xudMemoryStream
for the xDestination parameter in the UnzipPreprocessingFile event.
The parameters provided by the UnzippingMemoryFile event are not modifiable.

Declaration
Event UnzippingMemoryFile(sFilename As String, vaUncompressedData As Variant,
bEndOfData As Boolean)
Parameters

Parameter Description
sFilename This is the filename for the file who'se data is currently being provided to you.
baData This is the data of the file.
bEndOfData When this flag is False, it indicates to you that there is still more data to be

provided for the current file. In this case, the UnzippingMemoryFile event will be
triggered again (with the same sFilename parameter) so you can get more data.
When this flag is True, there is no more data to provide for the current file. This
flag is always True for files that had the UnzipPreprocessingFile event's
xUnzippingDestination parameter set to xudMemory.

Applicable methods

Unzip

 About Xceed Zip control properties

The following Xceed Zip control properties are used by the various Xceed Zip methods in order to determine their
behavior.
Most of these properties contain default values that are appropriate for common tasks, and can be altered visually
at design-time using your language's property editor window. At run time, your code can change the values of the
properties as desired before calling an Xceed Zip method. Some properties only apply to a few Xceed Zip
methods. The "Applicable methods" section in the documentation for each property lists the methods that refer to
the property.

List of the Xceed Zip control's properties:

· Abort
· BasePath
· BackgroundProcessing
· CompressionLevel
· CurrentOperation
· EncryptionPassword
· ExcludedFileAttributes
· ExtraHeaders
· FilesToProcess
· FilesToExclude
· MinDateToProcess
· MaxDateToProcess
· MinSizeToProcess
· MaxSizeToProcess
· PreservePaths

· ProcessSubfolders
· RequiredFileAttributes
· SfxBinaryModule
· SkipIfExisting
· SkipIfNotExisting
· SkipIfOlderDate
· SkipIfOlderVersion
· SpanMultipleDisks
· SplitSize
· TempFolder
· UseTempFile
· UnzipToFolder
· ZipFilename
· ZipOpenedFiles

 About Xceed Zip control methods

The Xceed Zip control provides the following methods to accomplish the tasks of compressing, uncompressing,
and manipulating zip files. Each method's behavior is determined by the values of various properties. The
"Applicable properties" section in the documentation for each method lists the properties that are used by that
method. When executing a method, it is important to correctly set all properties that are used by that method.
Unwanted side effects may occur if properties were altered for the execution of one method, but were not set to
the desired values for the next execution of a method that uses those same properties.
Most methods provide a return value that indicates if the operation was successful or if a warning or error has
occurred. A properly coded application always checks, at the very least, to make sure the operation was
successful. See the Error codes topic for a list of possible return values for all methods that return an xcdError
type result code.

List of the Xceed Zip control's methods:

· Zip
· Unzip
· ListZipContents
· GetZipFileInformation
· Convert
· PreviewFiles

· RemoveFiles
· TestZipFile
· AddFilesToProcess
· AddFilesToExclude
· GetErrorDescription
· License

 About Xceed Zip control events

Events generated by the Xceed Zip control represent activities that your program can recognize and act upon. For
example, the Zipping event occurs when a file is being zipped. So if you want to, you can write an event handler
for the Zipping event that displays "Currently zipping file:" on a status bar along with the filename and any other file
info you want for the file currently being zipped.
With Visual FoxPro 5.0 and up, events will be triggered only if you set Application.AutoYield = .F.. Place this code
in the section of your main program where you set up your environment. If you only have a single form in your
application that uses Xceed Zip, place Application.AutoYield = .F. in the forms load method, and set it back to the
default in the forms destroy method.
The following events are generated by the Xceed Zip control. The "Applicable methods" section in each event's
description topic indicates which methods trigger the event during their execution.
Code in event handlers for Xceed Zip events cannot recursively call Xceed Zip methods.

List of the Xceed Zip control's events:

· DiskNotEmpty
· FileStatus
· GlobalStatus
· InsertDisk
· InvalidPassword
· ListingFile
· PreviewingFile
· ProcessCompleted
· QueryMemoryFile
· RemovingFile

· SkippingFile
· TestingFile
· UnzippingMemoryFile
· UnzipPreprocessingFile
· Warning
· ZipComment
· ZipContentsStatus
· ZippingMemoryFile
· ZipPreprocessingFile

 About Xceed Zip control enumeration types

The following enumerations are built into the Xceed Zip control's ActiveX interface and are used as return codes
for Xceed Zip methods, as parameter types for Xceed Zip methods and events, and as types for some Xceed Zip
properties.

List of global constants:

xcdLastDisk = 0
xcdMinimumDate = 01/01/1900
xcdMaximumDate = 12/31/9999

List of the Xceed Zip control's enumeration types:

· xcdCompressionLevel
· xcdCompressionMethod
· xcdCurrentOperation
· xcdDiskSpanning
· xcdError
· xcdFileAttributes

· xcdNotEmptyAction
· xcdSkippingReason
· xcdUnzipDestination
· xcdValueType
· xcdWarning

 About Xceed Zip control error codes

The following constants define the possible return values of all the Xceed Zip methods of type xcdError, as well as
the xResult parameter of the ProcessCompleted event. The declarations for these error codes are built into the
ActiveX control's interface and should automatically be accessible by your code.
The sample applications include a function that displays a detailed message depending on the return value
provided. You can copy this function from the sample application directly into your own project(s) if desired. It is
useful for debugging purposes, or if you want your application to display messages if an error occurs.

Notable return values of type xcdError:

· xerSuccess (0)
· xerProcessStarted (1)
· xerWarnings (526)
· xerFilesSkipped (527)

All other error codes of type xcdError:

· xerEmptyZipFile (500)
· xerSeekInZipFile (501)
· xerEndOfZipFile (502)
· xerOpenZipFile (503)
· xerCreateTempFile (504)
· xerReadZipFile (505)
· xerWriteTempZipFile (506)
· xerWriteZipFile (507)
· xerMoveTempFile (508)
· xerNothingToDo (509)
· xerCannotUpdateAndSpan (510)
· xerMemory (511)
· xerSplitSizeTooSmall (512)
· xerSFXBinaryNotFound (513)
· xerReadSFXBinary (514)
· xerCannotUpdateSpanned (515)

· xerBusy (516)
· xerInsertDiskAbort (517)
· xerUserAbort (518)
· xerNotAZipFile (519)
· xerUninitializedString (520)
· xerUninitializedArray (521)
· xerInvalidArrayDimensions (522)
· xerInvalidArrayType (523)
· xerCannotAccessArray (524)
· xerUnsupportedDataType (525)
· xerDiskNotEmptyAbort (528)
· xerRemoveWithoutTemp (529)
· xerNotLicensed (530)
· xerInvalidSfxProperty (531)
· xerInternalError (999)

 About Xceed Compression control methods

The Xceed Compression control provides the following methods for compressing and decompressing data entirely
in memory. Each method's behavior is determined by the values of the Xceed Compression control's properties.
The "Applicable properties" section in the documentation for each method lists the properties that are used by that
method. Mainly, you will want to consult the properties if you are encrypting your data, or if you want to change the
compression factor.
The methods listed below provide a return value that indicates if the operation was successful or if a warning or
error has occurred. A properly coded application always checks, at the very least, to make sure the operation was
successful. See the Error codes topic for a list of possible return values for these methods.

List of the Xceed Compression control's methods:

· Compress
· Uncompress
· CalculateCrc
· GetErrorDescription
· License

 About Xceed Compression control properties

The following Xceed Compression control properties are used by the memory compression methods in order to
determine their behavior.
These properties contain default values that are appropriate for common tasks, and can be altered visually at
design-time using your language's property editor window. At run time, your code can change the values of the
properties as desired before calling an Xceed Compression method. Some properties only apply to a few Xceed
Compression methods. The "Applicable methods" section in the documentation for each property lists the methods
that refer to the property.

List of the Xceed Compression control's properties:

· CompressionLevel
· EncryptionPassword

 About Xceed Compression enumeration types

The following enumerations are built into the Xceed Compression control's ActiveX interface and are used as
return codes for Xceed Compression methods.

List of the Xceed Zip control's enumeration types:

· xcdCompressionError
· xcdCompressionLevel

 About Xceed Compression control error codes

The following constants define the possible return values of all the Xceed Compression control's methods of type
xcdCompressionError. The declarations for these error codes are built into the ActiveX control's interface and
should automatically be accessible by your code.

Error codes returned:

· xceSuccess (0)
· xceSessionOpened (1000)
· xceInitCompression (1001)
· xceCompression (1003)
· xceInvalidPassword (1004)
· xceChecksumFailed (1005)
· xceDataRemaining (1006)

Spanned zip files

A spanned zip file is a zip file that is split into multiple files, each located on a different floppy disk or other
removable media. Spanned zip files are particularly useful when there is a need to create a zip file that is too large
to fit on a single floppy disk or other removable media.

Zip method example for VB

The following code uses the Zip method to compress the file "C:\TEST\MY FILE.DAT" into the zip file "C:\TEST\
MY TEST.ZIP". You should check the Zip method's return value once you are done – if it is xerSuccess, the
operation was successful. Otherwise, look up the error code in the error codes topic to find out what went wrong.
The following code assumes you placed a button and an Xceed Zip control on a form and named them
Command1 and XceedZip1 respectively.

Sub Command1_Click()
 Dim ResultCode As xcdError
 ' All properties keep their default values except the two below
 XceedZip1.FilesToProcess = "c:\test\my file.dat"
 XceedZip1.ZipFilename = "c:\test\my test.zip"
 ' Start zipping
 ResultCode = XceedZip1.Zip
 ' Check the return value.
 If ResultCode <> xerSuccess Then
 MsgBox "Unsuccessful. Error # " + Str(nErr) + " occurred. " +
 "Description: " + XceedZip1.GetErrorDescription(xvtError,

ResultCode)
 Else
 MsgBox "File(s) succesfully zipped."
 End If
End Sub

Zip method example for Delphi

The following code uses the Zip method to compress the file "C:\TEST\MY FILE.DAT" into the zip file "C:\TEST\
MY TEST.ZIP". You should check the Zip method's return value once you are done – if it is xerSuccess, the
operation was successful. Otherwise, look up the error code in the error codes topic to find out what went wrong.
The following code assumes you placed a button and an Xceed Zip control on a form and named them Button1
and XceedZip1 respectively.

procedure TForm1.Button1Click(Sender: TObject);
var
 ResultCode: xcdError;
begin
 { All properties keep their default values except the two below }
 XceedZip1.FilesToProcess := 'c:\test\my file.dat';
 XceedZip1.ZipFilename := 'c:\test\my test.zip';
 { Start zipping }
 ResultCode := XceedZip1.Zip;
 { Check the return value. If ResultCode = xerSuccess, it worked,
 otherwise, display a message box that with a description of
 the error. Use the GetErrorDescription function. }
end;

Filtering properties

Some Xceed Zip properties are designed for the sole purpose of allowing you to control what types of files are
processed among those specified in the FilesToProcess property. The filtering properties are:

· FilesToExclude
· MinDateToProcess
· MaxDateToProcess
· MinSizeToProcess
· MaxSizeToProcess
· RequiredFileAttributes
· ExcludedFileAttributes

xcdError error code enumeration

xcdCurrentOperation
{

xerSuccess = 0,
xerProcessStarted = 1,
xerEmptyZipFile = 500,
xerSeekInZipFile = 501,
xerEndOfZipFile = 502,
xerOpenZipFile = 503,
xerCreateTempFile = 504,
xerReadZipFile = 505,
xerWriteTempZipFile = 506,
xerWriteZipFile = 507,
xerMoveTempFile = 508,
xerNothingToDo = 509,
xerCannotUpdateAndSpan = 510,
xerMemory = 511,
xerSplitSizeTooSmall = 512,
xerSFXBinaryNotFound = 513,
xerReadSFXBinary = 514,
xerCannotUpdateSpanned = 515,
xerBusy = 516,
xerInsertDiskAbort = 517,
xerUserAbort = 518,
xerNotAZipFile = 519,
xerUninitializedString = 520,
xerUninitializedArray = 521,
xerInvalidArrayDimensions = 522,
xerInvalidArrayType = 523,
xerCannotAccessArray = 524,
xerUnsupportedDataType = 525,
xerWarnings = 526,
xerFilesSkipped = 527,
xerDiskNotEmptyAbort = 528,
xerRemoveWithoutTemp = 529,
xerNotLicensed = 530,
xerInvalidSfxProperty = 531,
xerInternalError = 999

}
This enumeration is used by most all the Xceed Zip control methods that return a result code. Click on any of the
above parameters to display an explanation of their meaning.

Relative paths

A relative path is a path that must be combined with a root path in order to make a complete (absolute) path. For
example, "GRAPHICS\256COLOR\SMALL" is a relative path because it does not start by indicating a device or drive.
"C:\USERS\FRED\GRAPHICS\256COLOR\SMALL" is an absolute path.

Current directory

The current directory is the folder from which an application was executed. An application's current directory can
change depending on where it is installed or by which method is chosen to start it (it could be executed from a
batch file, by double-clicking on its program icon, from a shortcut, etc.)
It is recommended that you do not rely on the applications current directory when specifying paths and files to
process or exclude. Use the BasePath property instead.

Controlling how paths are stored in the zip file

Each file stored in a zip file must have a filename associated with it. A zip file can also contain path information for
each file.
When zipping up files using the Zip method, you may or may not want path information stored in the zip file, or you
may need to store only a portion of a path. Xceed Zip provides you with total control over how filenames and paths
are stored in the zip file. The different techniques you can use are described below.

Use the FilesToProcess property
In order to use the zip method, you must use the FilesToProcess property to specify the files you want to zip up.
As mentioned in the FilesToProcess property topic, you can specify files to zip up either with absolute paths,
relative paths or without paths at all.

· If you specify files using absolute paths, the entire path to the file, except the drive or device portion, will be
stored in the zip file. For example, if you specify "C:\DATA*.*" or "\\COMPUTERNAME\SHARENAME\DATA*.*" in
FilesToProcess, files will be stored in the zip file without the "C:\" or "\\COMPUTERNAME\SHARENAME\" portion of
the path.

· If you specify files using relative paths, the paths are assumed to be relative to the application's current
directory, unless you use the BasePath property, which lets you specify the path files are relative to. In both
cases, only the relative portion of a path is stored in the zip file.

· If you specify filenames without paths, the files will be searched for in the current directory, or the directory
specified in the BasePath property if it is used. When specifying only filenames, no path information will be
stored in the zip file.

Use the ZipPreprocessingFile event
Immediately before each file is actually zipped up into the zip file, the ZipPreprocessingFile event is triggered.
This event provides you with the sFilename parameter, which contains the path and filename of the file about to
be zipped. Modifying this parameter allows you to store any path and filename you want in the zip file.

Use the PreservePaths property
Setting the PreservePaths property to False will cause all path information to be discarded, so only the filename
will be stored in the zip file.

Absolute paths

An absolute path is a complete path. It can start by a drive letter and colon or it can be a UNC format path.
Examples of absolute paths are "C:\DATA FILES", "D:\" or "\\COMPUTERNAME\SHARENAME\DATA FILES". A path such
as "GRAPHICS\256COLOR\SMALL" is not an absolute path. It is a relative path because the root portion is missing.

Brief introduction to the zip file format

A zip file is a single file that contains one or more files. Zip files usually have the ".ZIP" filename extension, which
clearly identifies them.
Each file contained in a zip file is either stored as compressed data or as raw uncompressed data, and can be
encrypted or not encrypted. Together with a file's data and filename, a zip file can also store each file's name,
attributes and size. It can also store a path for each file, as well as the the file's date and time stamps, a user-
defined comment and a CRC checksum of the file's uncompressed data.
The zip file format is extensible, so other information about a file can be stored in it while still remaining compatible
with existing unzipping applications. For example, the new version 4.0 of the Xceed Zip Compression Library can
store and retrieve Windows NT file attributes and permissions, the file's UNICODE filename and other file
information not usually found in zip files.
Structurally, a zip file consists of one or more sections, each containing a file header followed by a file's
compressed or raw uncompressed data. The file headers contain information such as the file's filename, file
attributes and size. Following these sections is a compact "central directory" section, which contains (mostly
redundant) information about each file stored in the zip file. This central directory is very useful for quickly
determining what the contents of the zip file are, because it eliminates the need to scan through the entire zip file
in order to find the file headers. At the very end of the zip file, an optional "zip comment" section can be provided
and can be as large as 64K.
The zip format also supports spanned zip files. For spanned zip files, the central directory section is located on the
last disk, unless it is a very large zip file, in which case the central directory may be located on the last two or more
disks. Reading the central directory is usually the first step an unzipping application takes in order to unzip a file,
which explains why the last disk is usually requested first when unzipping files.
The Xceed Zip Compression Library also allows you to create spanned zip files that are not located on different
removable-media disks. Because these parts of the zip file are located in the same place, they must have different
filenames (the first part of the zip file is named ".ZIP", the second one is named ".Z01", the third is named ".Z03" and
so on.) It is important to note that most currently available unzipping applications (except those that use Xceed Zip
v4.0 and up as their zip/unzip engine) cannot unzip spanned zip files that are in the same location until each part
of the zip file is placed on separate removable media disks and renamed to ".ZIP".

CRC

Cyclic Redundancy Check. The CRC is a 32-bit checksum system that is used to verify the integrity of data. The
zip file format contains the 32-bit CRC of each file's original uncompressed data. When a file is unzipped, the CRC
is calculated on the file's newly unzipped data and compared with the stored CRC of the original file. If the CRCs
are the same, then the unzipped file is very probably identical to the original file, because the 32-bit CRC is able to
detect single bit variations even in the largest files.

BasePath property example

Let's say you want to zip all the .BMP files in the "C:\SERVER5\COMMON\DATA\BITMAPS\" folder, but you only want
the "DATA\BITMAPS\" portion of the path to be stored before each filename. Note the following code:

XceedZip1.ZipFilename = "C:\TEMP\TEST.ZIP"
XceedZip1.FilesToProcess = "C:\SERVER5\COMMON\DATA\BITMAPS*.BMP"
XceedZip1.PreservePaths = True
ResultCode = XceedZip1.Zip

If you use the above code, your files will be stored in the zip file with the following (incorrect) path and filenames
(the drive letter and colon are always discarded):

"SERVER5\COMMON\DATA\BITMAPS\PICTURE1.BMP"
"SERVER5\COMMON\DATA\BITMAPS\PICTURE2.BMP"
…

To get the desired results, use the following code:
XceedZip1.ZipFilename = "C:\TEMP\TEST.ZIP"
XceedZip1.BasePath = "C:\SERVER5\COMMON"
XceedZip1.FilesToProcess = "DATA\BITMAPS*.BMP"
XceedZip1.PreservePaths = True
ResultCode = XceedZip1.Zip

The files will then be stored with the following (correct) path and filenames instead:
"DATA\BITMAPS\PICTURE1.BMP"
"DATA\BITMAPS\PICTURE2.BMP"
…

xcdCompressionLevel enumeration

xcdCompressionLevel
{

xclNone = 0,
xclLow = 1,
xclMedium = 6,
xclHigh = 9

}
This enumeration is used by the CompressionLevel property. Explanations on each parameter can be found in that
property's help topic.

SkippingFile event

Description

The SkippingFile event is triggered whenever a file is excluded from processing or cannot be processed at all. It is
also triggered whenever the TestZipFile method encounters a corrupted file.
The SkippingFile event provides complete information on the file being skipped, as well as the reason it is being
skipped. The information provided by the SkippingFile event can be displayed on the screen, put into a log file,
printed out, or completely ignored – it's your choice. If you do not write a handler for the SkippingFile event, your
application will still be notified if any files are skipped because the method currently executing will return a result
code of either xerFilesSkipped or xerNothingToDo (if all files to be processed end up being skipped).
The parameters provided by the SkippingFile event are not modifiable.

Declaration
Event SkippingFile(sFilename As String, sComment As String, sFilenameOnDisk As
String, lSize As Long, lCompressedSize As Long, xAttributes As xcdFileAttributes,
lCRC As Long, dtLastModified As Date, dtLastAccessed As Date, dtCreated As Date,
xMethod As xcdCompressionMethod, bEncrypted As Boolean, xReason As
xcdSkippingReason)
Parameters

Parameter Description
sFilename The path and filename of the file being skipped. When zipping files, this is the

path and filename of the file exactly as it would have been stored in the zip file if it
was zipped. When unzipping files, this is the path and filename of the file exactly
as it is currently stored in the zip file.

sComment The file's comment.
sFileOnDisk The real path and filename of the file being skipped. When zipping files, this is

the path and filename of the actual file being zipped. When unzipping files, this is
the path and filename that would have been given to the file if it was unzipped.

lSize The file's original uncompressed size in bytes.
lCompressedSize The file's compressed size.
xAttributes The file's attributes.
lCRC The file's uncompressed data CRC checksum.
dtLastModified The last modification date and time stamp.
dtLastAccessed The last accessed date and time stamp.
dtCreated The creation date and time stamp.
xMethod The compression method
bEncrypted Is this an encrypted file?
xReason If it will be excluded, why? Values for the xReason parameter that range between

1 and 99 are skipping reasons generated for files that were skipped due to the
settings of the filtering properties or the SkipIf* properties. Values of 100 or more
are skipping reasons generated because of an error while processing the file.

Remarks

Most of the sample applications included with Xceed Zip include a handler for the SkippingFile event which
displays a message box indicating which file is being skipped and the reason for skipping the file. You can copy
the SkippingFile event handler from the sample application directly into your own application if desired, so you
won't have to write any code to handle this event.

RequiredFileAttributes property example

If you only want to process files that have the "Archive bit" on, and skip all other files, then you must set the
RequiredFileAttributes property to xfaArchive.
If you only want to process files that have the "Hidden" or "System" attributes on, and skip all other files, then you
must set the RequiredFileAttributes property to xfaHidden+xfaSystem.

But…
If you don't want to process files that have the "Archive bit" on, but you do want to process all other files, then
you need to use the ExcludedFileAttributes property, not the RequiredFileAttributes property.

ExcludedFileAttributes property example

If you don't want to process files that have the "Archive bit" on, but you do want to process other files, then you
must set the ExcludedFileAttributes property to xfaArchive.
If you don't want to process files that have the "Hidden" or "System" attributes on, but you do want to process
other files, then you must set the ExcludedFileAttributes property to xfaHidden+xfaSystem.

But…
If you only want to zip files that have the "Archive bit" on, and skip all other files, then you need to use the
RequiredFileAttributes property, not the ExcludedFileAttributes property.

Wildcards

Xceed Zip supports the * and ? wildcard characters. The * character matches a sequence of 0 or more characters.
The ? character matches exactly one character.
Do not use "*.*" to match all files - you must use "*" instead. In the 32-bit Windows world, using *.* will only match
files that contain a "." in them!
Use the ProcessSubfolders property to determine whether or not the contents of encountered subdirectories are
also processed.
Wildcard matching is not case sensitive.

FilesToExclude property example

To zip up all the .TXT files in the "C:\DATA" folder and the "D:\EXTRAS" folder, except those .TXT files that start with
"TMP", set the FilesToProcess and FilesToExclude properties to the following values:

FilesToProcess = "C:\DATA*.TXT" + CHR$(13) + "D:\EXTRAS*.TXT"
FilesToExclude = "TMP*"

MinDateToProcess and MaxDateToProcess properties example

To only zip or unzip files that have a date and time stamp in the month of January 2000, set the MinDateToProcess
and MaxDateToProcess to January 1, 2000 12:00am and January 31, 2000 11:59pm respectively.

MinSizeToProcess and MaxSizeToProcess properties example

To only zip or unzip files that are bigger than 1024 bytes but not larger than 1048576 bytes, set the
MinSizeToProcess and MaxSizeToProcess properties to 1024 and 1048576 respectively.

SkipIf* properties

The Skip* group of properties includes: SkipIfExisting, SkipIfNotExisting, SkipIfOlderDate and SkipIfOlderVersion.
These properties let you control whether files should be processed or not based on properties of files that already
exist in the destination zip file or unzipping location.

xcdDiskSpanning enumeration

xcdDiskSpanning
{

xdsNever = 0,
xdsAlways = 1,
xdsAutoDetect = 2

}
This enumeration is used by SpanMultipleDisks property. Explanations on each parameter can be found in that
property's help topic.

xcdCurrentOperation enumeration

xcdCurrentOperation
{

xcoIdle = 0,
xcoPreviewing = 1,
xcoListing = 2,
xcoZipping = 3,
xcoUnzipping = 4,
xcoRemoving = 5,
xcoTestingZipFile = 6,
xcoGettingInformation = 7,
xcoConverting = 8

}
This enumeration is used by CurrentOperation property. Explanations on each parameter can be found in that
property's help topic.

xcdExtraHeader enumeration

xcdExtraHeader
{

xehNone = 0,
xehExtTimeStamp = 1,
xehFileTimes = 2,
xehSecurityDescriptor = 4,
xehUnicode = 8

}
This enumeration is used by the ExtraHeaders property. Explanations on each parameter can be found in the that
property's help topic.

Convert method

Description

This method converts one type of zip file into another. While converting, any problems in the zip file are
automatically corrected when possible, therefore this method can also be used to repair zip files. You can perform
the following types of conversions and repairs:

· Convert a regular zip file into a self-extracting zip file
· Convert a self-extracting zip file into a regular zip file
· Convert a self-extracting zip file into a new self-extracting zip file with a different configuration
· Repair a zip file

The source zip file or self-extracting zip file must be specified in the ZipFilename property. The destination zip file
or self-extracting zip file must be specified with the sDestFilename parameter. If the destination is intended to be a
self-extracting zip file, you must specify a self-extractor binary in the SfxBinaryModule property. If the destination is
intended to be a regular zip file, you must leave the SfxBinaryModule property empty.

Declaration
Method Convert(sDestFilename As String) As xcdError
Parameters

Parameter Description
sDestFilename The path and filename of the converted zip file. (Specify a ".EXE" file extension

and a binary in the SfxBinaryModule property if you want to convert the zip file to
a self-extracting zip file)

Return values

A return value of type xcdError is returned. Only the return value of xerSuccess indicates that the method has
been completed succesfully. See the error codes topic for a list of possible return values.

Remarks

None

Applicable properties

Abort, ZipFilename, ExtraHeaders, SfxBinaryModule and the Sfx* properties.

Events triggered

ProcessCompleted

Related topics

If you want to create self-extracting zip file without requiring an already existing zip file, use the Zip method in
conjunction with the SfxBinaryModule property.

SfxBinaryModule property

Description

The SfxBinary property is used to inform the library to create self-extracting zip files instead of regular zip files, and
to provide the filename and location of the binary to use for creating the self-extracting Zip files.
You can use the binaries provided with the Xceed Zip Self-Extractor Module (XCDSFX16.BIN, XCDSFX32.BIN) or any
3rd party binary such as the Info-Zip groups free SFX binary (contact Xceed Software, we'll send it to you). Only
the binaries provided with the Xceed Zip Self-Extractor Module are configurable.
If you do not specify a path and filename in the SfxBinaryModule property, the Zip method will create regular zip
file.

Data type

String

Default value

Empty (Create regular zip files, not self-extracting zip files)

Applicable methods

Zip, Convert

Related topics

None

SfxButtons property

Description

The SfxButtons property contains the captions for all the buttons that are shown by self-extracting zip files created
with the Xceed Zip Self-Extractor Module. Button captions can contain the & character, which becomes invisible
and causes the following character to be underlined and considered a windows keyboard shortcut character to the
button (also known as a keyboard accelerator).
As an indexed string property, each entry in the array is a caption for a different button.
The maximum length string allowed for each entry is 30 characters.

Data type

xcdSfxButtons

Property array indexes

Value Meaning
xsbOK This is the caption for the OK buttons. The default value is "&OK".
xsbCancel This is the caption for the Cancel button, which is displayed in the folder browser,

and can only be changed in the 16-bit self-extractor. The 32-bit self-extractor
uses the system's browser and cannot be customized by Xceed Zip. The default
value is "&Cancel".

xsbAbort This is the caption for the Abort button that is displayed on the Progress dialog
during extraction. The button allows the user to stop the self-extracting process.
The default value is "&Abort".

xsbSkip This is the caption for the button that provides the option to skip a file. The button
is available whenever the Password Prompt dialog is displayed. The default value
is "&Skip File".

xsbAlwaysSkip This is the caption for the button that provides the option to always skip files that
cannot be decrypted, without any further prompting with the password dialog. The
button is available in the password dialog. The default value is "&Always Skip".

xsbYes This is the caption for Yes buttons. The default value is "&Yes".
xsbNo This is the caption for No buttons. The default value is "&No".
xsbOverwriteAll This is the caption for the button that provides the option to always overwrite files

that already exist, without any further prompting with the Overwrite dialog. The
button is available in the Overwrite dialog. The default value is "&All".

xsbOverwriteNone This is the caption for the button that provides the option to never overwrite files
that already exist, without any further prompting with the Overwrite dialog. The
button is available in the Overwrite dialog. The default value is "N&one".

xsbContinue This is the caption for the button that is displayed in the introduction message
box, and provides the option to continue, as oposed to exiting if the user clicks on
the exit button. The default value is "&Continue".

xsbExit This is the caption for the button that is displayed in the introduction message box
and the Select Unzipping Folder dialog. It provides the option to exit the self-
extractor without extracting any files. The default value is "&Exit".

xsbAgree This is the caption for the Agree button that is displayed in the License agreement
dialog box. This button usually indicates that the user accepts the terms of the
license agreement and can proceed with the self-extraction process. The default
value is "&Agree".

xsbRefuse This is the caption for the Refuse button that is displayed in the License
agreement dialog box. This button usually indicates that the user does not accept
the terms of the license agreement and can not proceed with the self-extraction
process. The default value is "&Refuse".

Default values

The default value for each button is listed in the above table.

Browsable

No

Remarks

The values in this property are consulted right before a call to the Zip method (when creating a self-extracting zip
file) and the Convert method.

Applicable methods

Zip, Convert

Related topics

None

SfxMessages property

Description

The SfxMessages property contains the text that is displayed by the various information dialog boxes shown by
the self-extractor. The values in this property are consulted by Xceed Zip when you are building a self-extracting
Zip file.
As an indexed string property, each entry in the array is text used in a different information dialog box.
For 32-bit components, the maximum length string allowed for each entry in this property is 2000 characters,
except for the license agreement message which can contain up to 8000 characters. For 16-bit components, the
maximum length for all SfxMessages string entries are 255 characters.
If you do not want the self-extractor to display any messages or dialogs, use the SfxClearMessages method to
disable them.

Data type

xcdSfxMessages

Property array indexes

Value Meaning
xsmSuccess This message is displayed in the Success dialog box upon successful extraction

of all the files in the archive. The default value is "All files were successfully
unzipped."

xsmFail This message is displayed in the Fail dialog box if an error occurs during the
extraction process.
The following macros are available when specifying a value for the fail message:
 %e = The error code that caused the failure.
The default value is "An error occurred while unzipping. One or more files were
not successfully unzipped. The error code is %e."

xsmErrorCreatingFolder This message is displayed in the Error Creating Folder dialog box.
The following macros are available when specifying a value for
ErrorCreatingDirMsg:
 %d = The folder that could not be created.
The default value is "Unable to create folder '%d'."

xsmIntro This message is displayed in the Introduction dialog box. The default value is
"Welcome to the Xceed Zip Self-Extractor. This program will unzip some files
onto your system."

xsmLicense This is the message displayed in the License agreement dialog box. The license
agreement dialog box allows you to display a license agreement and to force the
user to either accept or reject the terms of the agreement. If the terms are
rejected, the self-extractor will terminate and no files will be extracted.

xsmDestinationFolder This prompt is displayed in the Select Unzip Folder dialog box. The prompt asks
the user to select the path where the files will be extracted to.
The default value is "Select the folder where you want to unzip the files to."

xsmPassword This prompt asks the user to enter a password for a given file. It is displayed in
the Password Prompt dialog box.
The default value is "A password is required for file:"

xsmInsertLastDisk This prompt asks the user to insert the last disk of the set of disks containing the
self-extractor and its files. This prompt is used when the self-extractor spans
multiple disks, and the last disk is required.
The default value is "This self-extracting zip file is part of a multidisk zip file.
Please insert the last disk of the set."

xsmInsertDisk This prompt asks the user to insert a specific disk from the set of disks containing
the self-extractor and its files. This prompt is used when the self-extractor spans
multiple disks, and a specific disk is required.

The following macros are available when specifying a value for InsertDiskPrompt:
 %n = The number of the requested disk.
The default value is "Please insert disk #%n."

xsmAbortUnzip This prompt asks the user if they really wish to abort the self-extracting process,
after having clicked on the "Abort" button (see AbortBtn).
The default value is "Are you sure you want to abort the unzipping process?"

xsmCreateFolder This is the text displayed in the Create Folder dialog. The text informs the user
that the folder where files will be unzipped to does not exist, and asks the user if
they wish to create the folder.
The following macros are available when specifying a value for
CreateFolderPrompt:
 %d = The folder to create
The default value is "Folder '%d' does not exist. Do you want to create it?"

xsmOverwrite This prompt asks the user if they wish to overwrite a file that already exists. It is
used in the Overwrite dialog. See the Overwrite setting for information on what
choices the user has when the Overwrite dialog is displayed.
The following macros are available when specifying a value for OverwritePrompt:
 %f = The path and filename of the file to overwrite
The default value is "The file '%f' already exists. Do you want to overwrite it?"

xsmProgess This is the string used to indicate which file is currently being extracted. It is used
in the Progress dialog box.
The default value is "Unzipping file:"

Default value

The default value for each message is listed in the above table.

Browsable

No

Applicable methods

Zip, Convert

Related topics

None

SfxStrings property

Description

The SfxStrings property contains label captions and other miscellaneous text that are found inside the various
dialog boxes displayed by the self-extractor. The values in this property are consulted by Xceed Zip when you are
building a self-extracting Zip file.
As an indexed string property, each entry in the array is the text of a different label.
The maximum length string allowed for each entry in this property is 255 characters, except for the TitleStr (index
2) entry, which can only be 100 characters long.

Data type

xcdSfxStrings

Property array indexes

Value Meaning
xssProgressBar This is the string used to explain the purpose of the progress gauge that shows

the overall progress of the unzip operation.
The default value is "Overall progress:"

xssTitle This is string that appears in the title bar of every message box and dialog box
displayed by the Xceed Zip self-extractor.
The default value is "The Xceed Zip Self-Extractor"

xssCurrentFolder This is the string that is used in the folder browser to indicate the user-selected
folder where the files will be unzipped to.
The default value is "Current destination folder:"

xssShareName This is the string used to display the available connected drives in the folder
browser's drive list.
The following macros are available when specifying a value for DriveShareStr:
 %s = Share name
 %c = Computer name where share is located
The default value is "%s on '%c'"

xssNetwork This is the string used to represent the entry in the folder browser's drive list that
represents the entire network.
The default value is "Entire Network"

Default value

The default value for each string is listed in the above table.

Browsable

No

Applicable methods

Zip, Convert

Related topics

None

SfxDefaultPassword property

Description

The SfxDefaultPassword property lets you specify the password that the self-extracting zip file will use whenever it
tries to unzip an encrypted file. If this property is left empty, or the password specified is incorrect for any of the
encrypted files, then the self-extractor's Password Prompt dialog will be displayed (if it has not been disabled by
clearing the password prompt entry in the SfxMessages property).
This property can be useful for developers that want to create self-extracting zip files that cannot be unzipped by
programs such as WinZip™ without the appropriate decryption password.
The maximum length string allowed for this property is 80 characters.

Data type

String

Default value

Empty

Browsable

Yes

Applicable methods

Zip, Convert

SfxDefaultUnzipToFolder property

Description

The SfxDefaultUnzipToFolder property lets you specify the path where the self-extractor extracts files to by default.
This can be changed later by the user if the SfxMessages property has a non-empty value set for
xsmDestinationFolder. If the SfxDefaultUnzipToFolder property is empty, the self-extracting zip file's current
directory at run-time will be used.
The following macros are available when specifying a value for the SfxDefaultUnzipToFolder property: %w, %s,%t,
%r, %e, %p and %v.
The maximum length string allowed for this property is 255 characters.

Data type

String

Default value

Empty

Browsable

Yes

Applicable methods

Zip, Convert

Related topics

None

SfxExistingFileBehavior property

Description

The SfxOverwrite property lets you determine the overwrite behavior exhibited by self-extracting zip files whenever
files are being extracted that already exist in the destination folder.

Possible values

Value Meaning
xseAsk Prompt user to confirm with the Overwrite dialog. The Overwrite dialog prompts

the user on how to proceed. The user can select the "Yes" button (see YesBtn) to
overwrite the file, the "No" button (see NoBtn) to skip the file, the "All" button (see
OverwriteAllBtn) to overwrite the file and any subsequent files that already exist,
and finally the "None" button (see OverwriteNoneBtn) to skip the file and any
other files that already exist.

xseSkip Never overwrite files, and do not prompt user.
xseOverwrite Always overwrite files, and do not prompt user.

Data type

xcdSfxExistingFileBehavior

Default value

xseAsk

Browsable

Yes

Applicable methods

Zip, Convert

Related topics

None

SfxReadmeFile property

Description

The SfxReadmeFile property lets you specify the path and filename of a text file that will be displayed by the self-
extractor upon successfully extracting its files. The file is displayed using Notepad, right before the executable
specified by the SfxExecuteAfter property is run.
If SfxReadmeFile is empty, no text file will be displayed.
The maximum length string allowed for this property is 255 characters.

Data type

String

Default value

Empty

Browsable

Yes

Applicable methods

Zip, Convert

SfxExecuteAfter property

Description

The SfxRunExePath property lets you specify the path and filename of an executable that the self-extractor will
run upon successfully extracting its files.
A command line for the executable can be specified by adding a space after the path and filename, followed by the
command line.
The following macros are available when specifying a value for the SfxRunExePath property: %w, %s, %d, %t,
%e, %p and %v.
If the SfxRunExePath property is empty, no program will be run.
The maximum length string allowed for this property is 255 characters.

Data type

String

Default value

Empty

Browsable

Yes

Applicable methods

Zip, Convert

Related topics

None

SfxInstallMode property

Description

The SfxInstallMode property is a special mode you can put the self-extractor in. When SfxInstallMode is set to
True, the self-extractor will wait until the application executed by the self-extractor (see the SfxRunExePath
property) has terminated, and then delete all the files that were extracted and any new directories that were
created. When SfxInstallMode is True and nothing is specified in the SfxDefaultUnzipToFolder property
(recommended), the self-extractor will extract files in a random folder in the systems temporary folder (the
equivalent of putting %t\%r in the SfxDefaultUnzipToFolder property). Also, the self-extractors Select Unzip Folder
dialog box is not displayed when SfxInstallMode is True.
This property is particularly useful when the self-extractor is being used in order to extract and run an install or
setup program. Once the setup program has finished copying all the files to the appropriate locations, and has
terminated, setting the SfxInstallMode property to True allows you to ensure that the now unneeded files are
erased from the system.

Data type

Boolean

Default value

False

Browsable

Yes

Applicable methods

Zip, Convert

Related topics

None

SfxProgramGroup property

Description

The SfxProgramGroup property lets you specify the name of a program group that the self-extractor will create
after successfully unzipping files. If this property is left empty, a program group will not be created.
Use the SfxProgramGroupItems property to specify the contents of the program group created by the self-
extractor.
The program group is created before the text file specified in the SfxReadmeFile property is displayed, and before
the executable specified in the SfxExecuteAfter property is executed.

Data type

String

Default value

Empty

Browsable

Yes

Applicable methods

Zip, Convert

Related topics

None

SfxProgramGroupItems property

Description

The SfxProgramGroupItems property lets you specify the items to be created in the program group specified in the
SfxProgramGroup property.
Each item in the list consists of a path+filename as well as a name. You must separate the file+pathname from the
name using the | character (ascii value 124). Each item must be separated by a CR character (ascii value 13) or
the CR/LF characters (ascii value 13 followed by ascii value 10). See below for an example.
The SfxAddProgramGroupItem method allows you to easily add items to this property's list of program group
items.

The following macros are available when specifying a value for the path+filename portion of an item: %w, %s, %t,
%e, %d, %p and %v.
Here is an example of a string used to provide 3 items to the SfxProgramGroupItems property using VB:

XceedZip1.SfxProgramGroupItems = "%d\Tetris\Tetris.exe|Play Tetris Now" +
chr$(13) + "%d\Tetris\readme.txt|Read me!" + chr$(13) + "%d\Tetris\
Register.exe|Register Online!"

In Delphi, you would do this:
XceedZip1.SfxProgramGroupItems.Add('%d\Tetris\Tetris.exe|Play Tetris Now');
XceedZip1.SfxProgramGroupItems.Add('%d\Tetris\readme.txt|Read me!');
XceedZip1.SfxProgramGroupItems.Add('%d\Tetris\Register.exe|Register Online!');

Data type

String

Default value

Empty

Browsable

Yes

Applicable methods

Zip, Convert

Related topics

None

SfxExtensionsToAssociate property

Description

The SfxExtensionsToAssociate property lets you assign filename extensions that the self-extractor will register
with Windows.
Registering a filename extension allows Windows to recognize files that have a specific filename extension.
Windows will be able to show a description of the files ending with a given extension (in Windows Explorer, for
example) and execute an application whenever that type of file is opened. Thus, when specifying each filename
extension to be registered, you must provide a description and an associated application. The associated
application must be able to open the files ending with that extension.
The entire list of extensions to register are placed into one string that you assign to the SfxExtensionsToAssociate
property. Each extension to register consists of the extensions description, the extension (do not include the .
character) and the path+filename of the associated application. You must separate the description, extension and
file+pathname by using the | character (ascii value 124). Each extension to register must be separated by a CR
character (ascii value 13) or the CR/LF characters (ascii value 13 followed by ascii value 10). See below for an
example.
The SfxAddExtensionToAssociate method allows you to easily add items to this property's list of extensions to
associate.
The following macros are available when specifying a value for the path+filename of the application associated to
each extension: %w, %s, %d, %t, %e, %p and %v.
Here is an example of a string used to provide 3 extensions to the SfxExtensionsToAssociate property using VB:

XceedZip1.SfxRegisterExtensions = "Zip file|zip|%d\ZipView\ZipView.exe" +
chr$(13) + "High score file|sco|%p\Tetris\Tetris.exe" + chr$(13) + "Read
me file|me|%w\notepad.exe"

In Delphi, you would do this:
XceedZip1.SfxRegisterExtensions := 'Zip file|zip|%d\ZipView\ZipView.exe' + #13

+ 'High score file|sco|%p\Tetris\Tetris.exe' + #13 + 'Read me file|me|%w\
notepad.exe';

The extensions are registered right after the program group specified by the SfxProgramGroup property is created,
and before the text file specified in the SfxReadmePath property is displayed and the executable specified in the
SfxRunExePath is executed.

Data type

String

Default value

Empty

Browsable

Yes

Applicable methods

Zip, Convert

Related topics

None

SfxIconFilename property

Description

The SfxIconFilename property lets you customize the self-extracting zip file's application icon. This is the icon
Windows uses to display the executable's icon, as well as the icon that appears in the title bar of all the self-
extractors dialog boxes.
You can assign the filename and path of any valid windows icon (.ICO) file to this property. When this property is
left empty, no icon is assigned and the self-extracting zip file will use its built-in "zip" icon.

Data type

String

Default value

Empty

Browsable

Yes

Applicable methods

Zip, Convert

Related topics

None

GetZipFileInformation method

VB example Delphi example

Description

The GetZipFileInformation method allows you to obtain some general statistics about the zip file specified in the
ZipFilename property.
The method returns the zip file information by modifying the parameters you pass to the function – the contents of
the parameters are never checked by the GetZipFileInformation method.

Declaration
Method GetZipFileInformation(lNbFiles As Long, lCompressedSize As Long,
lUncompressedSize As Long, nCompressionRatio As Integer, bSpanned As Boolean) As
xcdError
Parameters

Parameter Description
lNbFiles Total number of files contained in the zip file
lCompressedSize Total compressed size of all the data in the zip file
lUncompressedSize Total uncompressed size of the data in the zip file
nCompressionRatio The compression ratio achieved by this zip file
bSpanned Returns true if the zip file spans multiple disks

Return values

A return value of type xcdError is returned. Only the return value of xerSuccess indicates that the method has
been completed succesfully. See the error codes topic for a list of possible return values.

Remarks

If the zip file spans multiple disks, the InsertDisk event will be triggered in order to request the last disk of the set.

Applicable properties

Abort, ZipFilename

Events triggered

InsertDisk, Warning

Related topics

Use the ListZipContents method to get information on the files contained in the zip file, as opposed to general
statistics on the zip file.

SfxAddProgramGroupItem method

Description

The SfxAddProgramGroupItem method adds an item to the SfxProgramGroupItems property's list of items to
insert in the program group.
SfxAddProgramGroupItem automatically handles separating items with the CR+LF characters. In fact, it performs
the same work as the following line of code:

XceedZip1.SfxProgramGroupItems = XceedZip1.SfxProgramGroupItems + sApplication
+ "|" + sDescription + Chr(13) + Chr(10)

Declaration
Method SfxAddProgramGroupItem(sApplication As String, sDescription As String)
Parameters

Parameter Description
sApplication The filename related to the item being added
sDescription A short description of the item

Return values

None

Applicable properties

SfxProgramGroupItems

SfxAddExtensionToAssociate method

Description

The SfxAddExtensionToAssociate method adds an item to the SfxExtensionsToAssociate list of extensions to
associate.
SfxAddExtensionToAssociate automatically handles separating items with the CR+LF characters. In fact, it
performs the same work as the following line of code:

XceedZip1.SfxExtensionsToAssociate = XceedZip1.SfxExtensionsToAssociate +
sDescription + "|" + sExtension + "|" + sApplication + Chr(13) + Chr(10)

Declaration
Method SfxAddExtensionToAssociate(sDescription As String, sExtension As String,
sApplication As String)
Parameters

Parameter Description
sDescription A short description of the item
sExtension The extension to associate to the application
sApplication The path and filename of the item that will be associated to

Return values

None

Applicable properties

SfxExtensionsToAssocitate

SfxResetButtons method

Description

The SfxResetButtons method resets all the entries in the SfxButtons property back to their original defaults.

Declaration
Method SfxResetButtons()
Parameters

None

Return values

None

Applicable properties

SfxButtons

SfxResetStrings method

Description

The SfxResetStrings method resets all the entries in the SfxStrings property back to their original defaults.

Declaration
Method SfxResetStrings()
Parameters

None

Return values

None

Applicable properties

SfxStrings

SfxResetMessages method

Description

The SfxResetMessages method resets all the entries in the SfxMessages property back to their original defaults.

Declaration
Method SfxResetMessages()
Parameters

None

Return values

None

Applicable properties

SfxMessages

SfxClearButtons method

Description

The SfxClearButtons method clears all the entries in the SfxButtons property. This will save a small amount of
space in the configuration portion of a self-extracting zip file. Usually, the SfxClearButtons method is used in
conjunction with the SfxClearMessages method.

Declaration
Method SfxClearButtons()
Parameters

None

Return values

None

Applicable properties

SfxButtons

SfxClearMessages method

Description

The SfxClearMessages method clears all the entries in the SfxButtons property. If all the entries are empty in the
SfxButtons property at the time the Zip or ConvertToSelfExtracting methods are called, then the resulting self-
extracting zip file will never display any dialog or message boxes on screen, nor prompt the user for passwords,
new disks or file replace conditions. In other words, if you want completely silent operation, call SfxClearMessages
method.

Declaration
Method SfxClearMessages()
Parameters

None

Return values

None

Remarks

If the purpose of a call to the SfxClearMessages method is to achieve completely silent operation (no windows
displayed by the self-extracting zip file), then you should also call the SfxClearButtons and SfxClearStrings
methods to erase all prompts, strings and button captions from the configuration portion of the self-extracting zip
file – you will obtain slightly smaller self-extracting zip files this way.

Applicable properties

SfxButtons

SfxClearStrings method

Description

The SfxClearStrings method clears all the entries in the SfxStrings property. This will save a small amount of
space in the configuration portion of a self-extracting zip file. Usually, the SfxClearStrings method is used in
conjunction with the SfxClearMessages method.

Declaration
Method SfxClearStrings()
Parameters

None

Return values

None

Applicable properties

SfxStrings

Warning event

Description

The Warning event is generated whenever a recoverable problem is encountered during the execution of one of
the Xceed Zip methods. The event provides you with the filename of the file that was being processed when the
problem was detected, and the warning code indicating the nature of the problem.

Declaration
Event Warning(sFilename As String, xWarning As xcdWarning)
Parameters

Parameter Description
sFilename This is the filename of the file currently being processed
xWarning This is a code indicating the type of problem detected with the file.

Remarks

If you do not write a handler for this event, you will still get a return value of xerWarnings when the method you are
calling completes. This will provide you with an indication that there were warnings despite not having written any
code for this event.

InvalidPassword event

Description

The InvalidPassword event is triggered the first time an encrypted file is encountered when unzipping or testing
files. The event allows you to supply a decryption password to be used in order to decrypt the file and therefore be
able to unzip it. The InvalidPassword event is also triggered whenever files are encountered that cannot be
decrypted with the password supplied the last time the InvalidPassword event was triggered.
When unzipping files, if no handler is written for the InvalidPassword event, encrypted files will not be unzipped or
tested. If an incorrect password is supplied, the InvalidPassword event will be triggered again until either the
correct password is supplied, or the command is issued to skip the current file being unzipped or tested.
Note that the SkippingFile event occurs for any encrypted files that are skipped due to an invalid password or if
Xceed Zip is instructed to skip the current file being unzipped.

Declaration

(Parameters in bold are modifiable)
Event InvalidPassword(sFilename As String, sNewPassword As String, bRetry As
Boolean)
Parameters

Parameter Description
sFilename The filename of the file that requires the password in order to be decrypted.
sNewPassword Provide the encryption password here.
bRetry Set this to True if you have provided a new password. Leaving this parameter to

False (the default value it has when the event is triggered) will cause Xceed Zip
to skip the file from being unzipped.

xcdFileAttributes enumeration

xcdFileAttributes
{

xfaNone = 0,
xfaReadOnly = 1,
xfaHidden = 2,
xfaSystem = 4,
xfaVolume = 8,
xfaFolder = 16,
xfaArchive = 32

}
This enumeration is used by various Xceed Zip control events. It is the type for the xAttributes parameter. It is also
used by the RequiredFileAttributes and ExcludedFileAttributes properties. Explanations for each of the values
belonging to the xcdFileAttributes enumeration can be found in each property or event's topic description.

xcdCompressionMethod enumeration

xcdCompressionMethod
{

xcmStored = 0,
xcmDeflated = 8

}
This enumeration is used by the ListingFile, UnzipPreprocessingFile, ZipPreprocessingFile, RemovingFile,
TestingFile and SkippingFile events. Explanations on each parameter can be found in the corresponding event's
help topic.

xcdNotEmptyAction enumeration

xcdNotEmptyAction
{

xnaErase = 0,
xnaAppend = 1,
xnaAskAnother = 2,
xnaAbort = 3

}
This enumeration is used by the InsertDisk event. Explanations on each parameter can be found in the
appropriate event's help topic.

xcdSkippingReason enumeration

xcdSkippingReason
{

xsrIncluded = 0,
xsrFilesToExclude = 1,
xsrSkipExisting = 2,
xsrSkipNotExisting = 3,
xsrSkipOlderDate = 4,
xsrSkipOlderVersion = 5,
xsrRequiredAttributes = 6,
xsrExcludedAttributes = 7,
xsrMinDate = 8,
xsrMaxDate = 9,
xsrMinSize = 10,
xsrMaxSize = 11,
xsrSkipUser = 12,
xsrDuplicateFilenames = 13,
xsrSkipReplace = 14,
xsrUpdateWithoutTemp = 115,
xsrInvalidDiskNumber = 100,
xsrFolderWithSize = 101,
xsrWriteFile = 102,
xsrOpenFile = 103,
xsrReadFile = 104,
xerMoveFile = 105,
xsrInvalidPassword = 106,
xsrInvalidCRC = 107,
xsrInvalidUncompSize = 108,
xsrCentralHeaderData = 109,
xsrLocalHeaderData = 110,
xsrDescriptorHeaderData = 111,
xsrCreateFolder = 112,
xsrAccessDenied = 113,
xsrCreateFile = 114,
xsrUpdateWithoutTemp = 115,
xsrRenamedToExisting = 116,
xsrVolumeWithSize = 117,
xsrCannotSetVolumeLabel = 118,
xsrCentralHeaderNotFound = 119,
xsrUnzipDiskFull = 120,
xsrCompress = 121,
xsrUncompress = 122

}
This enumeration is used by SkippingFile event. Explanations on each parameter can be found in that event's help
topic.

xcdSfxButtons enumeration

xcdSFXButtons
{

xsbOk = 0,
xsbCancel = 1,
xsbAbort = 2,
xsbSkip = 3,
xsbAlwaysSkip = 4,
xsbYes = 5,
xsbNo = 6,
xsbOverwriteAll = 7,
xsbOverwriteNone = 8,
xsbContinue = 9,
xsbExit = 10,
xsbAgree = 11,
xsbRefuse = 12

}
This enumeration is used by the SfxButtons property. Explanations on each parameter can be found in the that
property's help topic.

xcdSfxMessages enumeration

xcdSfxMessages
{

xsmSuccess = 0,
xsmFail = 1,
xsmErrorCreatingFolder = 2,
xsmIntro = 3,
xsmLicense = 4,
xsmDestinationFolder = 5,
xsmPassword = 6,
xsmInsertLastDisk = 7,
xsmInsertDisk = 8,
xsmAbortUnzip = 9,
xsmCreateFolder = 10,
xsmOverwrite = 11,
xsmProgress = 12

}
This enumeration is used by the SfxMessages property. Explanations on each parameter can be found in the that
property's help topic.

xcdSfxStrings enumeration

xcdSfxStrings
{

xssProgressBar = 0,
xssTitle = 1,
xssCurrentFolder = 2,
xssShareName = 3,
xssNetwork = 4

}
This enumeration is used by the SfxStrings property. Explanations on each parameter can be found in the that
property's help topic.

xcdSfxExistingFileBehavior enumeration

xcdSfxExistingFileBehavior
{

xseAsk = 0,
xseSkip = 1,
xseOverwrite = 2

}
This enumeration is used by the SfxExistingFileBehavior property. Explanations on each parameter can be found
in the that property's help topic.

xerBusy constant

Value

516

Description

The current instance of the library is already running another operation.

Tips

Although the library is fully multi-threaded, each instance of the Xceed Zip control can only do one operation at a
time. This makes event handling much clearer. The developer can create another instance of the library if it is
necessary to do another, independent zipping or unzipping operation simultaneously.

xerCannotAccessArray constant

Value

524

Description

The data in the string or array passed to the vaDataToCompress parameter of the ZippingMemoryFile event
cannot be accessed by the library.

Tips

Make sure the variant or variable is a valid 1-dimensional array of byte values, or a string variable.

xerCannotUpdateAndSpan constant

Value

510

Description

The library was instructed to update a zip file that ended up being too big to fit in the current location. A zip file
cannot be updated from a regular zip into a spanned or split zip file.

Tips

The spanned or split zip file must be completely recreated in order to be updated into a spanned or a split zip file.

xerCannotUpdateSpanned constant

Value

515

Description

The library was instructed to remove or add files to an existing spanned or split zip file. This type of operation is
not supported.

Tips

The spanned or split zip file must be recreated without the files you want to remove, or recreated with the entire
group of files that you want it to contain.

xerCreateTempFile constant

Value

504

Description

An error occurred when trying to create a temporary file.

Tips

Make sure that the path you have specified in the TempFolder property is valid and not protected by security or
access permissions your application does not have. Temporary files are opened for exclusive writing.

xerEmptyZipFile constant

Value

500

Description

The zip file is empty.

Tips

The zip file contains no files, although it still has the structure of a zip file (including an empty central directory)

xcdWarning enumeration

xcdWarning
{

xwrIncompleteWrite = 300,
xwrInvalidSignature = 301,
xwrInvalidCentralOffset = 302,
xwrInvalidLocalOffset = 303,
xwrInvalidDescriptorOffset = 304,
xwrJunkInZip = 305,
xwrSecurityNotSupported = 306,
xwrSecurityGet = 307,
xwrSecuritySet = 308,
xwrSecuritySize = 309,
xwrSecurityVersion = 310,
xwrSecurityUnknownCompression = 311,
xwrSecurityData = 312,
xwrUnicodeSize = 313,
xwrUnicodeData = 314,
xwrExtraHeaderSize = 315,
xwrTimeStampSize = 316,
xwrTimeStampFlags = 317,
xwrFileTimesSize = 318,
xwrInvalidFileCount = 319

}
This enumeration is used by the Warning event. Click on any of the above parameters to display an explanation of
their meaning.

xerEndOfZipFile constant

Value

502

Description

Premature end-of-file encountered in the zip file.

Tips

This can happen when the library is reading data from the zip file, but an end-of-file condition occurs. The zip file is
probably truncated, or is corrupted.

xerInsertDiskAbort constant

Value

517

Description

The library was instructed to abort the current operation during the occurrence of the InsertDisk event.

Tips

This can happen when the bDiskInserted parameter of the InsertDisk event is left to its default value of False.
The library takes this as an indication that no handler was written for the InsertDisk event. Of course, this error
will also occur if the parameter is voluntarily set to False.

xerInternalError constant

Value

999

Description

An unexpected error occurred in the library.

Tips

There are some types of errors tested in the library's code that should not occur in practice. If you get this error
value, please contact Xceed Software immediately.

xerInvalidArrayDimensions constant

Value

522

Description

The array passed in the vaDataToCompress parameter of the ZippingMemoryFile event was not a 1-dimensional
array.

Tips

Make sure the variant or variable indeed a valid 1-dimensional byte array or a string variable.

xerInvalidArrayType constant

Value

523

Description

The array passed in the vaDataToCompress parameter of the ZippingMemoryFile event was not a byte array.

Tips

Make sure the variant or variable is a valid 1-dimensional array of byte values, or a string variable.

xerMemory constant

Value

511

Description

The system ran out of memory.

Tips

A memory allocation requested by the library was refused by the operating system. The machine was low on
available memory.

xerMoveTempFile constant

Value

508

Description

Cannot move the temporary zip file to the real zip file destination specified by the ZipFilename property.

Tips

When zipping, and the UseTempFile property is set to True, the library creates the zip file in a temporary file.
When it has completed the operation, it attempts to move the temporary file to the destination zip file. A copy is
made if the source and destination are on different drives. This error can happen when the application using the
library does not have the permissions required to delete the destination zip file, even though the library was able to
open it for writing before the operation started as a check to avoid this type of error...

xerNotAZipFile constant

Value

519

Description

The zip file specified in the ZipFilename property is invalid.

Tips

The library has determined that the file is not a zip file, because a required signature was not found anywhere in
the file.

xerNothingToDo constant

Value

509

Description

No files ended up being processed.

Tips

This can happen when all the files specified to the FilesToProcess property ended up being skipped (keep in mind
that the SkippingFile event is triggered for each file that's skipped) due to reasons such as being unable to find or
open the file, the file was excluded by the FilesToExclude or one of the other filtering properties, etc. This can also
happen if you try to delete files from an already empty zip file, or from a non-existent zip file.

xerSuccess constant

Value

0

Description

This value indicates that the method's process executed successfully, without errors, warnings, or skipped files.

xerOpenZipFile constant

Value

503

Description

The zip file could not be opened or found.

Tips

The path and filename provided to the ZipFilename property may be invalid. When trying to zip or update files in a
zip file, this could mean that the zip file is already opened for reading or writing by another application. When
unzipping files or listing the zip file's contents, this could mean the zip file is already opened by another application
for writing.

xerReadSfxBinary constant

Value

514

Description

An error occurred while reading data from the self-extractor binary specified in the SfxBinaryModule property.

Tips

This can happen if the network drive where the self-extractor binary is located on suddenly becomes
disconnected, or if the floppy disk the self-extractor binary is located on is removed from the drive while it is being
read by the library. The library was able to open the self-extractor binary for reading, though.

xerReadZipFile constant

Value

505

Description

An error occurred while reading data from the zip file.

Tips

This can happen if the network drive where the zip file is located on suddenly becomes disconnected, or if the
floppy disk the zip file is located on is removed from the drive while it is being unzipped from the library. It can also
happen if there is a bad sector on the drive where the zip file is located.

xerSeekInZipFile constant

Value

501

Description

Cannot seek in the zip file.

Tips

This can happen when the library is looking for signatures that identify the zip file but is unable to perform a seek
operation. Make sure you are using a random-access device.

xerSfxBinaryNotFound constant

Value

513

Description

Could not find the self-extractor binary specified in the SfxBinaryModule property.

Tips

Verify the path and filename of the specified self-extractor binary. This error can also happen if the library cannot
open the file for read operations. It may be opened in an exclusive mode by another application, or the application
using the library may not have the permissions required to open the file.

xerSplitSizeTooSmall constant

Value

512

Description

The value specified in the SplitSize property was too small.

Tips

The split size is smaller than the biggest of the zip file header's. The headers themselves cannot span file
boundaries – they must reside on the same disk/split file. In any case, do not attempt to split zip files smaller than
1024 bytes – this is highly inefficient for most filesystems.

xerUninitializedArray constant

Value

521

Description

An invalid byte array was passed in the vaDataToCompress parameter of the ZippingMemoryFile event.

Tips

Make sure the variant or variable passed is indeed a valid byte array.

xerUninitializedString constant

Value

520

Description

An invalid string was passed in the vaDataToCompress parameter of the ZippingMemoryFile event.

Tips

Make sure the variant or variable passed is indeed a string or byte array.

xerUnsupportedDataType constant

Value

525

Description

An invalid data type was received by the library for the vaDataToCompress parameter of the ZippingMemoryFile
event.

Tips

Only byte arrays or strings can be used.

xerUserAbort constant

Value

518

Description

The abort property was set to True, and the current operation was succesfully aborted.

xerWriteTempZipFile constant

Value

506

Description

An error occurred while writing to a temporary file.

Tips

Make sure that the drive where your system's temporary folder resides has enough disk space and is accessible,
or the drive pointed to by the TempFolder property has enough disk space and is accessible.

xerWriteZipFile constant

Value

507

Description

An error occurred while writing to the zip file.

Tips

Make sure that the drive where your zip file is being written to is not full and has not been disconnected or
rendered inaccessible. This error can happen if the network drive the zip file is located on suddenly becomes
disconnected, or if the floppy disk the zip file is located on is removed from the drive while it is being created or
updated by the library.

 About Xceed Zip control warnings

The following constants define the possible values of the Warning event's xWarning parameter.
The declarations for these constants are built into the ActiveX control's interface and should automatically be
accessible by your code.

Possible values for the xWarning parameter:

· xwrIncompleteWrite (300)
· xwrInvalidSignature (301)
· xwrInvalidCentralOffset (302)
· xwrInvalidLocalOffset (303)
· xwrInvalidDescriptorOffset (304)
· xwrJunkInZip (305)
· xwrSecurityNotSupported (306)
· xwrSecurityGet (307)
· xwrSecuritySet (308)
· xwrSecuritySize (309)
· xwrSecurityVersion (310)
· xwrSecurityUnknownCompression (311)
· xwrSecurityData (312)
· xwrUnicodeSize (313)
· xwrUnicodeData (314)
· xwrExtraHeaderSize (315)
· xwrTimeStampSize (316)
· xwrTimeStampFlags (317)
· xwrFileTimesSize (318)
· xwrInvalidFileCount (319)

xwrExtraHeaderSize constant

Value

315

Description

The total size of all the extra headers in the zip file exceeds the 64K boundary allowed by the format.

Tips

The zip file is corrupted.

xwrFileTimesSize constant

Value

318

Description

Could not restore a file's "filetime" header information from the zip file because the extra header containing this
information has an invalid size.

Tips

The time stamp information will not be restored for this file. This header contains the three dates (creation time,
last modification time and last accessed time) for the file. The file's last modification time will still be restored
because if is contained in the zip file's central directory entry for each file.

xwrIncompleteWrite constant

Value

300

Description

A write operation to the zip file failed. The component was attempting to dump buffered data to the zip file before
closing it.

Tips

The resulting zip file, if present, may be corrupted. The zip file should be verified and recreated if necessary.

xwrInvalidCentralOffset constant

Value

302

Description

The zip file's central directory has an entry with an incorrect offset. This can happen when unexpected data is
found between two central directory entries, or when the first entry in the central directory is located past the offset
indicated in the zip file's end-of-central-directory header.

Tips

The zip file is damaged.

xwrInvalidDescriptorOffset constant

Value

304

Description

Unexpected data was found between a compressed file's data and the file's descriptor header. A file's descriptor
header is normally located after the file's compressed data at an offset determined by information provided by the
file's local header. In this case, the descriptor header was found past the expected offset.

Tips

The zip file is damaged.

xwrInvalidLocalOffset constant

Value

303

Description

A file's local header entry in the zip file was found past the offset reported in the zip file's central directory.

Tips

The zip file is damaged.

xwrInvalidSignature constant

Value

301

Description

A signature that identifies a zip file was not found, or was the incorrect signature. The file may not be a zip file.

Tips

Make sure it is indeed a zip file by calling the GetZipFileInformation method.

xwrJunkInZip constant

Value

305

Description

An error occurred while compressing a file, but the library was unable to remove the file's data that was already
compressed and written into the zip file. This can happen, for example, when a file being compressed to floppy
disks has already spanned a disk and then becomes inaccessible to the library. The library would normally seek
back into the zip file, erase the already written compressed data for the file, and continue with the next file to zip. It
cannot do this if a new disk was inserted.

Tips

The zip file will contain extra data that will not affect other files, but that makes the zip file unnecessarily larger. It is
therefore recommended to rezip the files or pass the zip file through the convert method, to eliminate the extra
data that was inserted due to this situation.

xwrSecurityData constant

Value

312

Description

Could not restore a file's security information from the zip file because the security descriptor's data is corrupted.

Tips

In this case the library will not restore a file's security information, but the file will be unzipped anyway.

xwrSecurityGet constant

Value

307

Description

Could not obtain a file's security information. That means the library was unable to store a file's security
information in the the zip file as requested by the setting of the ExtraHeaders property.

Tips

Either the filesystem does not support security, or the operating system reports that it cannot provide the security
information to the library. The latter case is probably occuring because the user that's running the software using
the library does not have the privileges to obtain a file's security information.

xwrSecurityNotSupported constant

Value

306

Description

The library was unable to write a security descriptor header, or to recreate a file's security information. When
zipping, this can happen when you have requested that the library write a security descriptor header (see the
ExtraHeaders property) but one of the files being zipped is located on a filesystem that does not support security
permissions. When unzipping, this can happen when you have requested that the library restore security
information stored in the zip file, and the destination filesystem or folder does not support security.

Tips

When this warning occurs, you know a file's security information has not been stored or restored. You can choose
to either zip or unzip files from or to a filesystem that does support security, or remove the xehSecurity constant
from the ExtraHeaders property.

xwrSecuritySet constant

Value

308

Description

Could not restore a file's security information from the zip file. That means the library was unable to write a file's
security information to disk, as requested by the setting of the ExtraHeaders property.

Tips

Either the filesystem does not support security, or the operating system reports that it cannot provide the security
information to the library. The latter case is probably occuring because the user that's running the software using
the library does not have the privileges to obtain a file's security information.

xwrSecurityUnknownCompression constant

Value

311

Description

Could not restore a file's security information from the zip file because the security descriptor was compressed
using an unknown compression method.

Tips

The library supports security descriptors compressed with the deflate algorithm. It is conceivable, although
unlikely, that there are some libraries or applications that may attempt to compress the security descriptor with
another compression algorithm that was used in previous versions of the zip file format. If this is the case, library
will unzip the file anyway, but without restoring its security information. If you come across a zip file that produces
this warning, we suggest you contact Xceed Software and let us know.

xwrSecurityVersion constant

Value

310

Description

Could not restore a file's security information from the zip file because the security descriptor version is not
recognized.

Tips

The zip file was created with an application that creates security extra headers that are not currently supported by
the Xceed Zip Compression Library. The file will be unzipped anyway, but without restoring its security information.
If you come across a zip file that produces this warning, we suggest you contact Xceed Software and let us know.

xwrTimeStampFlags constant

Value

317

Description

Could not restore a file's "timestamp" header information from the zip file because the extra header containing this
information contains invalid information.

Tips

The time stamp information will not be restored for this file. This header contains the three dates (creation time,
last modification time and last accessed time) for the file. The file's last modification time will still be restored
because if is contained in the zip file's central directory entry for each file.

xwrTimeStampSize constant

Value

316

Description

Could not restore a file's "timestamp" header information from the zip file because the extra header containing this
information has an invalid size.

Tips

The time stamp information will not be restored for this file. This header contains the three dates (creation time,
last modification time and last accessed time) for the file. The file's last modification time will still be restored
because if is contained in the zip file's central directory entry for each file.

xwrUnicodeData constant

Value

313

Description

Could not restore a file's Unicode filename from the zip file because the Unicode descriptor's data is corrupted.

Tips

The file will be unzipped with its regular ANSI filename.

xwrUnicodeSize constant

Value

314

Description

Could not restore a file's Unicode filename from the zip file because the Unicode descriptor's size is invalid.

Tips

The file will be unzipped using its regular ANSI filename.

xwrSecuritySize constant

Value

309

Description

Could not restore a file's security information from the zip file because the security descriptor's size is invalid.

Tips

The security header contains invalid or corrupted data. In this case the library will not restore a file's security
information, but the file will be unzipped anyway.

ZipOpenedFiles property

Description

The ZipOpenedFiles property determines whether files that are currently opened for writing by another process or
application should be skipped or not when running the Zip method.
Setting the ZipOpenedFiles property to False will cause any files currently opened for write operations to be
skipped. The SkippingFile event is triggered whenever a file is skipped in this way.
Setting the ZipOpenedFiles property to True will allow Xceed Zip to attempt to zip the file despite it being opened
for writing. When in this mode, you should verify that nothing is actually being written to the file at the moment it is
being zipped, because the file may be zipped in an inconsistent state.

Data type

Boolean

Default value

False

Applicable methods

Zip

xcdUnzipDestination enumeration

xcdUnzipDestination
{

xudDisk = 0,
xudMemory = 1,
xudMemoryStream = 2,

}
This enumeration is used by the UnzipPreprocessingFile property. Explanations on each parameter can be found
in that property's help topic.

Help file revision

Xceed Zip Compression Library v4.0
Windows Help File Last Revised on April 15, 1999

Copyright ©1995-1999 Xceed Software Inc. All rights reserved.
This document may not be reproduced in whole or in part without written authorization from Xceed software Inc.

xsrIncluded constant

Value

0

Description

The file is not being skipped.

Tips

This constant exists because the UnzipPreprocessingFile or ZipPreprocessingFile events can indicate that a file is
excluded or not, and when they indicate that a file is excluded (i.e.: the bExcluded parameter is True) the xReason
parameter contains the xsrIncluded constant (0) – the file is not excluded, and therefore not skipped. It's a filler
constant.

xsrFilesToExclude constant

Value

1

Description

The filename matched an entry in the FilesToExclude property.

xsrSkipExisting constant

Value

2

Description

The file already exists in the destination, and the SkipIfExisting property is set to True.

xsrSkipNotExisting constant

Value

3

Description

The file does not already exist in the destination, and the SkipIfNotExisting property is set to True.

 About Xceed Zip control skipping reasons

The following constants define the possible values of SkippingFile event's xReason parameter, as well as the
xReason parameter provided by the ListingFile, PreviewingFile, UnzipPreprocessingFile and ZipPreprocessingFile
events.
The declarations for these constants are built into the ActiveX control's interface and should automatically be
accessible by your code.
Values for the xReason parameter that range between 1 and 99 are skipping reasons generated for files that were
skipped due to the settings of the filtering properties or the SkipIf* properties. Values of 100 or more are skipping
reasons generated because of an error while processing the file.

Possible values for the xReason parameter:

xsrIncluded (0)
xsrFilesToExclude (1)
xsrSkipExisting (2)
xsrSkipNotExisting (3)
xsrSkipOlderDate (4)
xsrSkipOlderVersion (5)
xsrRequiredAttributes (6)
xsrExcludedAttributes (7)
xsrMinDate (8)
xsrMaxDate (9)
xsrMinSize (10)
xsrMaxSize (11)
xsrSkipUser (12)
xsrDuplicateFilenames (13)
xsrSkipReplace (14)
xsrUpdateWithoutTemp (15)
xsrInvalidDiskNumber (100)
xsrFolderWithSize (101)
xsrWriteFile (102)
xsrOpenFile (103)

xsrReadFile (104)
xerMoveFile (105)
xsrInvalidPassword (106)
xsrInvalidCRC (107)
xsrInvalidUncompSize (108)
xsrCentralHeaderData (109)
xsrLocalHeaderData (110)
xsrDescriptorHeaderData (111)
xsrCreateFolder (112)
xsrAccessDenied (113)
xsrCreateFile (114)
xsrUpdateWithoutTemp (115)
xsrRenamedToExisting (116)
xsrVolumeWithSize (117)
xsrCannotSetVolumeLabel (118)
xsrCentralHeaderNotFound (119)
xsrUnzipDiskFull (120)
xsrCompress (121)
xsrUncompress (122)

xsrSkipOlderDate constant

Value

4

Description

The file's date is older than the date of the file already existing in the destination, and the SkipIfOlderDate property
is set to True.

xsrSkipOlderVersion constant

Value

5

Description

The file's version resource information is older than the version resource information of the file already existing in
the destination, and the SkipIfOlderVersion property is set to True.

xsrRequiredAttributes constant

Value

6

Description

The file does not have all the required attributes listed in the RequiredFileAttributes property.

xsrExcludedAttributes constant

Value

7

Description

The file has one or more of the attributes listed in the ExcludedFileAttributes property.

xsrMinDate constant

Value

8

Description

The file's date is smaller than the date specified in the MinDate property.

xsrMaxDate constant

Value

9

Description

The file's date is greater than the date specified in the MaxDate property.

xsrMinSize constant

Value

10

Description

The file's size is smaller than the size specified in the MinSize property.

xsrMaxSize constant

Value

11

Description

The file's size is greater than the size specified in the MaxSize property.

xsrSkipUser constant

Value

12

Description

Your application set the bExcluded flag to True for this file during the occurrence of the file's ZipPreprocessingFile
or UnzipPreprocessingFile event.

xsrDuplicateFilenames constant

Value

13

Description

The file has the same name and path as another file already selected to be zipped or to remain in the zip file.

Tips

This can result from including files on disk recursively while discarding path information (example, when the
ProcessSubfolders property is set to True and you have specified wildcards and you have set the PreservePaths
property to False).

xsrInvalidDiskNumber constant

Value

100

Description

The reported disk number for the file is invalid. This can happen if the zip file's central directory indicates that the
file lies on a disk numbered above 32767.

Tips

The zip file is corrupted.

xsrFolderWithSize constant

Value

101

Description

The file is reported as being a folder with a size in bytes other than 0.

Tips

The zip file is corrupted. A file or folder with this type of problem is simply not unzipped.

xsrWriteFile constant

Value

102

Description

Error writing data to the file.

Tips

The library was able to open the file for writing, and was able to verify that there was enough disk space free.
However, it still could not write data to the file. This can happen in exceptional situations, like when a user
removes a floppy from the drive while the library is writing data to a file on it.

xsrOpenFile constant

Value

103

Description

Could not open the file for reading.

Tips

The file may currently be opened for reading in exclusive mode or for writing by another application. Setting the
ZipOpenedFiles property to True may in some cases allow the library to open the file for reading even though it is
currently opened for writing by another application.

xsrReadFile constant

Value

104

Description

Error reading data from the file.

Tips

The library was able to open the file for reading, but was not able to complete a read operation on the file. This is a
severe error, and could be caused by circumstances such the removal of a floppy disk from the drive being read
from, or an untimely disconnection of a network drive being read from.

xsrMoveFile constant

Value

105

Description

Cannot move a temporary file to the real file's destination.

Tips

When the library is instructed to compare version resource information before unzipping files (because the
SkipIfOlderVersion property is set to True), it unzips each file into the temporary folder (see the TempFolder
property for details) in order to compare its version resource information with the destination file's version resource
information. The xsrMoveFile skipping reason can occur when the file is indeed going to replace the other file, but
the library is unable to overwrite the older file with the new one just unzipped into the temporary folder. This may
be a file security or permission problem.

xsrInvalidPassword constant

Value

106

Description

The file was encrypted and the library was unable to decrypt the file with the password provided.

Tips

The password in the EncryptedPassword property was invalid for this file, as well as any passwords provided to
the InvalidPassword event if it was implemented.

xsrInvalidCRC constant

Value

107

Description

The calculated CRC (checksum) for the file does not match the CRC indicated in the zip file.

Tips

After the file was unzipped, the CRC calculated by the library does not match the CRC stored in the zip file. The
purpose of the stored CRC is to allow the unzipping application or library to determine if the unzipped data has
been restored to its original state. Therefore, getting this skipping reason means the f uncompressed data is
corrupted. The file is unzipped anyway, so you can recover as much of it as you can.

xsrInvalidUncompSize constant

Value

108

Description

The file's real uncompressed size does not match the uncompressed size indicated in the zip file.

Tips

After the file was unzipped, the uncompressed size of the file differed from the uncompressed size stored in the
zip file. Therefore, this is a good indication that the file was not recreated exactly the same as the original.
Therefore, the file should be considered to be corrupted, to be incomplete or to contain extra data at the end.

xsrCentralHeaderData constant

Value

109

Description

The file's entry in the central directory contains conflicting information when compared to the file's local header.

Tips

This particular skipping reason can happen when you are using the unzip-without-last-disk unzipping mode and
the zip file contains inconsistent data for this file.

xsrLocalHeaderData constant

Value

110

Description

The file's local header contains conflicting information when compared to the file's entry in the central directory.

Tips

The zip file contains inconsistent data for this file.

xsrDescriptorHeaderData constant

Value

111

Description

The file's descriptor header contains conflicting information when compared to the file's entry in the central
directory.

Tips

The zip file contains inconsistent data for this file.

xsrCreateFolder constant

Value

112

Description

Could not create the folder that this file is being unzipped to.

Tips

The folder that cannot be created may be a part of the path specified in the unzipToFolder property, or it may be a
folder that is part of the path stored in the zip file for the file being skipped.

xsrAccessDenied constant

Value

113

Description

The file being unzipped could not be written because the already existing file it was about to replace could not be
deleted by the library.

Tips

This may be a file security or permission problem.

xsrCreateFile constant

Value

114

Description

The file being unzipped could not be created for writing in the destination unzipping location.

Tips

This may be a file security or permission problem. This can also happen if the destination filesystem or folder
contains too many files.

xsrUpdateWithoutTemp constant

Value

15

Description

Could not update or replace a file in the zip file without using a temp file.

Tips

This can happen only when you have set the UseTempFile property to False and are adding files that already exist
in the target zip file. The library is able to append files to an already existing zip file, without using a temporary file
– but if some files already exist in the zip file and need to be replaced, then the library will skip those files. You can
remedy the situation by turning on the use of temporary files with the UseTempFile property.

xsrRenamedToExisting constant

Value

116

Description

A file was renamed by the application (through the use of the ZipPreprocessingFile event) to a filename and path
that already exists in the zip file.

Tips

This can only happen when zipping files.

xsrVolumeWithSize constant

Value

117

Description

The volume label is reported having a size in bytes other than 0.

Tips

The zip file is corrupted. The volume label is not restored to the destination unzipping location's drive.

xsrCannotSetVolumeLabel constant

Value

118

Description

Cannot set the volume label on the destination drive.

Tips

This can happen when the zip file contains a volume label, and the library is unable to restore it to the destination
unzipping location drive (determined by the UnzipToFolder property).

Contents

Click on the topic you want to jump to.

Introduction

· Welcome to Xceed Zip v4.0
· Xceed Zip Compression Library Features
· Xceed Zip Self-Extractor Module Features
· What's new since version 3.5
· About the free trial version

Getting started quickly

· Installation instructions
· Getting Started Quickly topics

Xceed Zip control reference

· Overview
· Brief introduction to the zip file format
· Controlling how paths are stored
· Formless use of the control
· Running simultaneous operations
· Methods
· Properties
· Events
· Enumerations
· Error codes
· Warning codes
· Skipping reasons

Self-Extractor Module reference

· Overview
· Methods
· Properties
· Enumerations

Xceed Compression control reference

· Overview
· Methods
· Properties
· Enumerations
· Error codes

Samples

· About the sample applications

Migration

· Migrating from previous versions

Deploying

· What must be distributed
· About the ActiveX component
· About the Self-Extractor binaries

Legal information

· License, copyright and disclaimer
· Acknowledgments

Contact and product information

· Xceed Software's contact info
· Order form with pricing info
· How to order Xceed Zip
· Upgrades
· Technical support
· Year 2000 compliance

Help file revision

xerWarnings constant

Value

526

Description

There were warnings during the operation. The Warning event is triggered whenever a warning occurs during an
operation. You can write a handler for the Warning event if you want to know what the problems were and which
files they were associated with.

About the Self-Extractor Module properties

The following Xceed Zip control properties are used by the Zip and Convert methods to configure the self-
extracting zip files they create.
Most of these properties contain default values that are appropriate for self-extracting zip files. However, you will
most likely want to change a few things, such as the title and introduction message of the self-extracting zip files
you create, so you should browse the following properties to be sure you are getting the most from the self-
extracting zip files this library can create.

List of the Xceed Zip control's properties related to the Self-Extractor Module:

· SfxButtons
· SfxDefaultPassword
· SfxDefaultUnzipToFolder
· SfxExecuteAfter
· SfxExistingFileBehavior
· SfxExtensionsToAssociate
· SfxIconFilename

· SfxInstallMode
· SfxMessages
· SfxProgramGroup
· SfxProgramGroupItems
· SfxReadmeFile
· SfxStrings

About the Self-Extractor Module methods

The Xceed Zip control provides the following methods to accomplish the tasks of creating self-extracting zip files.

List of the Xceed Zip control's methods related to creating self-extracting zip files:

· SfxAddExtensionToAssocitate
· SfxAddProgramGroupItem
· SfxClearButtons
· SfxClearMessages
· SfxClearStrings

· SfxResetButtons
· SfxResetMessages
· SfxResetStrings

The following two methods are used to create the
self-extracting zip file, or to convert a regular zip
file into a self-extracting zip file. They are part of
the Xceed Zip control:

· Zip
· Convert

About the Self-Extractor Module enumeration types

The following enumerations are built into the Xceed Zip control's ActiveX interface and are used by some of the
properties related to the Self-Extractor Module configuration properties.

List of the Xceed Zip control's enumeration types related to the Self-Extractor Module:

· xcdSfxButtons
· xcdSfxExistingFileBehavior

· xcdSfxStrings
· xcdSfxMessages

Converting a zip file into a self-extracting zip file

Adding self-extracting zip file capability to an already existing zip file

To add self-extracting capability to an already created zip file, perform the following 4 steps:

· Specify the zip file to convert. To do this, set the ZipFilename property.

· Specify the self-extractor binary to use. To do this, set the SfxBinaryModule property.

· Tell Xceed Zip to start converting. To do this, call the Convert method.

· Make sure it worked successfully. To do this, check the Convert method's return value.

Here is sample code for these 4 steps:
' Don't forget to put an Xceed Zip control on a form
Dim ResultCode As xcdError
XceedZip1.ZipFilename = "c:\zip files\sample.zip"
XceedZip1.SfxBinaryModule = "xcdsfx32.bin"
ResultCode = XceedZip1.Convert("c:\zip files\sample.exe")
If ResultCode = xerSuccess Then
 MsgBox "Converted successfully."
Else
 MsgBox XceedZip1.GetErrorDescription(xvtError, ResultCode)
EndIf

Things you should consider

You will probably want to customize the self-extracing zip files you create. For example, you may want to
change the self-extracting zip file's title and introduction message, or have it suggest a default unzipping folder
to the user running it. There is a group of properties that start with "Sfx" designed to let you do just that. See the
About the Self-Extractor Module properties topic to find out what you can customize.

When you are converting an existing zip file into a self-extracting zip file, you can't modify the contents of the
existing zip file. Consult the Creating a new self-extracting zip file topic if you want to know what kind of control
you're missing when you aren't creating the self-extracting zip file directly from the source files to zip up.

Compress method

Description

The Compress method compresses data entirely in memory, without dealing with files. It supports streaming data
and can also encrypt data while it is compressing it.

Declaration
Method Compress(vaSource As Variant, vaCompressed As Variant, bEndOfData As Boolean)
As xcdCompressionError
Parameters

Parameter Description
vaSource The data to compress. The variant can contain a string or a byte array.
vaCompressed The compressed data is placed here, in the form of a byte array variant. The

content of the vaCompressed parameter is always cleared before writing the
compressed data to it.

bEndOfData Set this parameter to True if you only have a single block of data to compress
and require that the compressed data be immediately written to the
vaCompressed parameter. Set this parameter to False if you are dealing with
streaming data.
The bEndOfData parameter allows you to provide the compression engine with
data to compress as it becomes available. Whenever you have some new data to
compress, put your data in the vaSource parameter, set bEndOfData to False,
then call the Compress method. When the call completes, the compression
engine may or may not have writen any compressed data to the vaCompressed
parameter. If there is data in the vaCompressed parameter, you must grab it
before calling the Compress method again, because if there is new compressed
data, it will overwrite data currently present in the vaCompressed parameter.
When your last block of data is sent to the Compress method in this fashion, set
bEndOfData to True. The compression engine will flush all remaining
compressed data to the vaCompressed parameter's variable.

Return values

See the xcdCompressionError topic for a description of the possible return values.

Remarks

If you want to encrypt the data while it is being compressed, set the EncryptionPassword property.
To control the amount of compression applied, set the CompressionLevel property.
The compressed data contains a 32-bit checksum that is used by the Uncompress method to make sure that the
data uncompresses properly and is identical to the original uncompressed data sent to the Compress method.
If you are compressing a stream of data, and you want to force the compression engine to flush its output buffers
right away without obtaining more uncompressed data, you can do this by calling the Compress method with an
empty vaSource variable.

Applicable properties

The Xceed Compression control's EncryptionPassword, CompressionLevel properties.

Events triggered

None

Uncompress method

Description

The Uncompress method decompresses data entirely in memory. The Uncompress method deals with data that
was compressed by the Compress method, and does not deal with zip files or zipped data. It works the same was
as the Compress method does, and supports the same streaming data and encryption capabilities.

Declaration
Method Uncompress(vaSource As Variant, vaUncompressed As Variant, bEndOfData) As
xcdCompressionError
Parameters

Parameter Description
vaSource The data to uncompress. The variant can contain a string or a byte array.
vaUncompressed The uncompressed data is placed here, in the form of a byte array variant. The

content of the vaUncompressed parameter is always cleared before writing the
uncompressed data to it.

bEndOfData Set this parameter to True if you only have a single block of data to uncompress
and require that the uncompressed data be immediately written to the
vaUncompressed parameter. Set this parameter to False if you are dealing with
streaming data.
The bEndOfData parameter allows you to provide the decompression engine with
data to uncompress as it becomes available. Whenever you have some new data
to uncompress, put your data in the vaSource parameter, set bEndOfData to
False, then call the Uncompress method. When the call completes, the
decompression engine may or may not have writen any uncompressed data to
the vaUncompressed parameter. If there is data in the vaUncompressed
parameter, you must grab it before calling the Uncompress method again,
because if there is new uncompressed data, it will overwrite data currently in the
vaUncompressed parameter. When your last block of data is sent to the
Uncompress method in this fashion, set bEndOfData to True. The decompression
engine will flush all remaining uncompressed data to the vaUnompressed
parameter's variable.

Return values

See the xcdCompressionError topic for a description of the possible return values.

Remarks

If the data was encrypted when it was compressed, you will have to provide the decryption password by setting
the EncryptionPassword property. If you do not do this, you will get the xceInvalidPassword return value.
The compressed data contains a 32-bit checksum that is used by the Uncompress method to make sure that the
data uncompresses properly and is identical to the original uncompressed data sent to the Compress method. If
the data is uncompressed and has a bad checksum, you will get the xceChecksumFailed return value.

Applicable properties

The Xceed Compression control's EncryptionPassword property.

Events triggered

None

License method

Description

The License method must be called to license the control for runtime use when you are instantiating the control
dynamically. This applies, for example, when using VB's CreateObject() call or the COM API call
CoCreateInstance. You do not have to call this method when the control is placed on a form or if you are
instantiating the control with the following VB code:

Dim WithEvents MyZipInstance As XceedZip
Set MyZipInstance = New Xceed Zip

The License method should be the first method you call after instantiating the Xceed Zip or Xceed Compression
object.
If you do not call this method when dynamically instantiating the control with the CreateObject() or
CoCreateInstance or similar methods of instantiating an object, all Xceed Zip methods will not work and will
immediately return the xerNotLicensed error code.
When the control is being used on an HTML document with the <OBJECT> tag, a License Package File (LPK)
should be used to provide the license key. You can obtain more information and an LPK creation kit from
http://www.microsoft.com/workshop/components/activex/licensing.asp#LPKFILES or from
http://www.microsoft.com/gallery/tools/lpktool/lpktool.asp.

Declaration
Method License(sLicense As String) As Boolean
Parameters

sLicense
Provide your license key here. Only registered users have a license key, which can be found in the
LICENSE.TXT file located in the folder where the registered Xceed Zip Compression Library v4.0 package
was installed. Users of the free trial version do not need to call the License method, because it is only
required for applications that are being distributed, and the free trial version is intended to be used only on
the development machine for evaluation purposes.

Return values

Returns True if the license key was accepted, False if the license key was invalid.

Remarks

The License method is required because instantiation methods such as CreateObject() and CoCreateInstance()
do not cooperate with the licensing scheme provided by IclassFactory2.

License method

Description

The License method must be called to license the control for runtime use when you are instantiating the control
dynamically. This applies, for example, when using VB's CreateObject() call or the COM API call
CoCreateInstance. You do not have to call this method when the control is placed on a form or if you are
instantiating the control with the following VB code:

Dim WithEvents MyZipInstance As XceedZip
Set MyZipInstance = New Xceed Zip

The License method should be the first method you call after instantiating the Xceed Zip or Xceed Compression
object.
If you do not call this method when dynamically instantiating the control with the CreateObject() or
CoCreateInstance or similar methods of instantiating an object, all Xceed Zip methods will not work and will
immediately return the xerNotLicensed error code.
When the control is being used on an HTML document with the <OBJECT> tag, a License Package File (LPK)
should be used to provide the license key. You can obtain more information and an LPK creation kit from
http://www.microsoft.com/workshop/components/activex/licensing.asp#LPKFILES or from
http://www.microsoft.com/gallery/tools/lpktool/lpktool.asp.

Declaration
Method License(sLicense As String) As Boolean
Parameters

sLicense
Provide your license key here. Only registered users have a license key, which can be found in the
LICENSE.TXT file located in the folder where the registered Xceed Zip Compression Library v4.0 package
was installed. Users of the free trial version do not need to call the License method, because it is only
required for applications that are being distributed, and the free trial version is intended to be used only on
the development machine for evaluation purposes.

Return values

Returns True if the license key was accepted, False if the license key was invalid.

Remarks

The License method is required because instantiation methods such as CreateObject() and CoCreateInstance()
do not cooperate with the licensing scheme provided by IclassFactory2.

CompressionLevel property

Description

The CompressionLevel property controls the amount of compression to be applied to data being compressed by
the Compress method. The greater the amount of compression applied, the greater the time it takes to perform the
compression.

Data type

xcdCompressionLevel

Possible values

Value Meaning
xclNone (0) No compression. The Compress method will still work, but the data won't be

smaller. The data will have a CRC checksum, though.
xclLow (1) Minimum compression. This setting takes the least amount of time to compress

data. When compared to the XcdMedium setting, this setting usually gives
noticeably faster compression times in exchange for about 1 to 15% larger
compressed data.

xclMedium (6) Normal compression. This is the best balance between the time it takes to
compress data and the compression ratio achieved.

xclHigh (9) Maximum compression. This setting achieves the best compression ratios that
the Zip deflate compression algorithm is capable of producing. When compared
to the xcdMedium setting, this setting significantly increases compression time in
exchange for about 1-3% smaller compressed data. We recommend that you use
this setting only when you really need to achieve the smallest possible
compressed data and when compression time is unimportant.

Default value

xclMedium

Browsable

Yes

Applicable methods

Compress

EncryptionPassword property

Description

The EncryptionPassword property contains the case-sensitive password to be used for encrypting or decrypting
data with the Compress and Uncompress methods.
If the EncryptionPassword property is left empty before executing the Compress method, encryption will not be
applied. If the data you are uncompressing was compressed with an encryption password, then the
EncryptionPassword property must contain a valid decryption password for the data to uncompress, otherwise an
error will be returned.
Passwords can be up to 80 characters long.

Data type

String

Default value

Empty

Browsable

Yes

Remarks

The encryption algorithm used by the Xceed Zip Compression Library is the same one used by the PKZip 2.04g
program. This type of encryption can resist attacks by amateurs if the password is well chosen and long enough
(at least 16 characters) but it will probably not resist attacks by determined users or experts. Therefore, we
suggest that you always use long passwords, and when possible, do not rely solely on this encryption system to
protect sensitive data.

Applicable methods

Compress, Uncompress

xcdCompressionError enumeration

xcdCompressionError
{

xceSuccess = 0,
xceSessionOpened = 1000,
xceInitCompression = 1001,
xceCompression = 1003,
xceInvalidPassword = 1004,
xceChecksumFailed = 1005,
xceDataRemaining = 1006
xceNotLicensed = 1007,
xceBusy = 1008

}
This enumeration is used Compress and Uncompress methods. Explanations on each parameter can be found in
the About the Xceed Compression control error codes help topic.

Streaming

Streaming data means data that is readable or obtainable only in a steady stream or in block portions of sequential
data. For example, a file's data arriving through modem is considered streaming data because you only get
access to the data in a sequential fashion, as it becomes available. A file already completely transferred is no
longer streaming data – you can access the entire file at will.

xerDiskNotEmptyAbort constant

Value

528

Description

The library was instructed to abort the current operation during the occurrence of the DiskNotEmpty event.

Tips

This error occurs when the DiskNotEmpty event's xAction parameter is set to xnaAbort.

xwrInvalidFileCount constant

Value

319

Description

The zip file's central directory contains less entries than the amount indicated in the zip file's "end-of-central-
directory" header.

Tips

The zip file is damaged.

Zipping files from memory directly to a zip file

Compression from memory to a zip file

Xceed Zip allows you to compress blocks of memory into files in a zip file. To accomplish this, perform the
following 6 steps:

· Specify the zip file to create or add files to. To do this, set the ZipFilename property.

· If you also have real files to zip up as well as blocks of memory, you must specify these real files.
To do this, set the FilesToProcess property.

· Provide the filename(s) and file information for the block(s) of memory to compress into the zip file.
To do this, write a handler for the QueryMemoryFile event.

· Tell Xceed Zip to start zipping. To do this, call the Zip method.

· Provide the data for the filename(s) you specified to compress from memory. To do this, write a
handler for the ZippingMemoryFile event.

· Make sure it worked successfully. To do this, check the Zip method's return value.

Here is sample code for these 6 steps (excluding the code for the QueryMemoryFile and ZippingMemoryFile
events):

' Don't forget to put an Xceed Zip control on a form
Dim ResultCode As xcdError
XceedZip1.ZipFilename = "c:\outgoing\pictures.zip"
XceedZip1.FilesToProcess = "c:\graphics\cars*.bmp"
ResultCode = XceedZip1.Zip
If ResultCode = xerSuccess Then
 MsgBox "Files zipped successfully."
Else
 MsgBox XceedZip1.GetErrorDescription(xvtError, ResultCode)
EndIf

Here is sample code to put into the QueryMemoryFile event handler. This sample assumes you only have a
single file to zip up from memory:

sFilename = "Readme.txt" ' necessary
bFileProvided = (lUserTag <> 0) ' lUserTag is 0 the first time QueryMemoryFile

is triggered, 1 the second time, 2 the third time, etc. So this line of
code will only set bFileProvided to True once.

Here is sample code to put into the ZippingMemoryFile event handler:
vaDataToCompress = "Welcome to my special collection of " +

"car pictures. These .bmp files can be loaded in MS Paint..."
vaEndOfData = True

Unzipping files from a zip file directly to memory

Decompressing from a zip file directly to memory

When unzipping files, Xceed Zip allows you selectively determine the way it will be unzipped. You can chose to
unzip files to disk (the default), to unzip files into a single block of memory, or to provide you with streaming data
(blocks of uncompressed data as it becomes available from the decompression engine). To unzip files to
memory, perform the following 6 steps.

· Specify the zip file to unzip files from. To do this, set the ZipFilename property.

· Specify the folder where to unzip files to (even if you are unzipping all files to memory). To do this,
set UnzipToFolder property.

· Tell Xceed Zip to start unzipping. To do this, call the Unzip method.

· Tell Xceed Zip which files you want it to unzip directly to memory. To do this, write a handler for the
UnzipPreprocessingFile event.

· Get the uncompressed file data. To do this, write a handler for the UnzippingMemoryFile event.

· Make sure it worked successfully. To do this, check the Unzip method's return value.

Here is sample code for these 6 steps (excluding the code for the UnzippingMemoryFile event):
' Don't forget to put an Xceed Zip control on a form
Dim ResultCode As xcdError
XceedZip1.ZipFilename = "c:\incoming\searchresults.zip"
XceedZip1.UnzipToFolder = "c:\other files\"
ResultCode = XceedZip1.Unzip
If ResultCode = xerSuccess Then
 MsgBox "Files unzipped successfully."
Else
 MsgBox XceedZip1.GetErrorDescription(xvtError, ResultCode)
EndIf

Here is sample code to put into the UnzipPreprocessingFile event handler. This sample assumes you only
want two particular files to be unzipped to memory, and the rest to go to "c:\other files":

if sFilename = "results.txt" or sFilename = "query.txt" then
 xDestination = xudMemory
endif

Here is sample code to put into the UnzippingMemoryFile event handler. This sample assumes you have
declared the "results" and "query" variables globally elsewhere than in the UnzippingMemoryFile event handler:

Dim Results As String
Dim Query As String
if sFilename = "results.txt" then Results = baData
if sFilename = "query.txt" then Query = baData

Event handler

Event-specific, user-provided code that is executed whenever the event is triggered. For example, if you want to
play a sound whenever a button is clicked, you would write code to play the sound in the event handler for the
button's click event.

xerFilesSkipped constant

Value

527

Description

Some of the files to process were skipped (not processed) during the operation because of errors.

Tips

The SkippingFile event is triggered whenever a file is skipped for any reason during an operation. Sometimes files
are skipped because of errors (such as a read or write problem), and other times they are skipped because your
application instructed Xceed Zip to skip them (using the bExcluded parameter in the ZipPreprocessingFile or
UnzipPreprocessingFile event, for example). You will only get the xerFilesSkipped result code if one of more files
were skipped because of errors.
You can write a handler for the SkippingFile event if you want to know what the errors were and which files they
were associated with.

xerRemoveWithoutTemp constant

Value

529

Description

The RemoveFiles method was called, but the UseTempFile property was set to False.

Tips

The library must use a temporary file in order to remove files from a zip file. Set the UseTempFile property to True
to remedy the situation by allowing the library to use a temp file.

Installation instructions for Visual Basic 4.0 (32-bit)

The Xceed Zip Compression Library setup utility will copy all the necessary files to your system and place the
XCEEDZIP.DLL in the Windows System folder and "register" the control with the operating system. The only thing
left to do is to make the control available to your VB 4.0 projects. To do this, perform the following steps:

· Start the 32-bit Visual Basic 4.0.
· Select Custom Controls... from the Tools menu.
· In the Show box, select the Controls checkbox.
· An entry named "Xceed Zip Compression Library v4.0" entry should appear in the "available controls" list.
· Make sure the checkbox next to the "Xceed Zip Compression Library v4.0" entry is selected. Click on the

OK button and the Xceed Zip and Xceed Compression icons should now appear in your toolbox.

If the control is not in the "available controls" list, perform the following steps:

· Try reinstalling the Xceed Zip Compression Library from its setup program. Continue only if that didn't help.
· Select the Browse... button from the Custom Controls dialog.
· Find and select the XCEEDZIP.DLL file (use the one in the Windows System folder that was copied there by

the setup program) then click on the OK button.
· The control should now appear in the components list.

Installation instructions for Visual C++ 4.0 (MFC projects)

The Xceed Zip Compression Library setup utility will copy all the necessary files to your system and place the
XCEEDZIP.DLL in the Windows System folder and register it with the operating system. The only thing left to do is to
create a wrapper class for your MFC projects (assuming you're working with MFC) and make the control available
to your VC++ 4.0 projects. To do this, perform the following steps:

· Start Visual C++ 4.0 (developer studio)
· Open your MFC AppWizard application project, or create a new one by selecting the New... menu item from

the File menu, and choosing the Project Workspace option. Select MFC AppWizard and follow the Wizards
instructions to create the project. Be sure that you select the OLE Controls option for the question What
OLE support would you like to include?

· Select the Component... menu item from the Insert menu.
· Select the OLE Controls tab in the Component Gallery dialog.
· The Xceed Zip control icon appear in the list of controls displayed in the OLE Controls tab in the

Component Gallery dialog.
· Select the Xceed Zip control icon, then click the Insert button in the Component Gallery dialog to insert the

control in your project. The Confirm Classes dialog should appear.
· Click OK to close the Confirm Classes dialog.
· Click the Close button to close the Component Gallery dialog.
· The XCEEDZIP.CPP and XCEEDZIP.H files should now be part of your project. You will now be able to

instantiate the Xceed Zip object in your project, and see the Xceed Zip icon available in your Controls
toolbar when designing dialog boxes.

If the Xceed Zip control icon does not appear in the list of controls displayed in the OLE Controls tab in
the Component Gallery dialog:

· Try reinstalling the Xceed Zip Compression Library from its setup program. Continue only if that didn't
help.Select the Customize... button.

· Select the OLE Controls category in the Customize Component Gallery dialog.
· Select the Import... button in the Customize Component Gallery dialog.
· Find and select the XCEEDZIP.DLL file (preferably the one in the Windows System folder that was copied

there by the Xceed Zip setup program), then click on the OK button.
· Click the OK button in the Customize Component Gallery dialog.
· The Xceed Zip control icon should now appear in the list of controls.

Installation instructions for Visual C++ 5.0 (MFC projects)

The Xceed Zip Compression Library setup utility will copy all the necessary files to your system and place the
XCEEDZIP.DLL in the Windows System folder and register it with the operating system. The only thing left to do is to
create a wrapper class for your MFC projects (assuming you're working with MFC) and make the control available
to your VC++ 5.0 projects. To do this, perform the following steps:

· Start Microsoft Visual C++ 5.0
· Open your MFC AppWizard application project, or create a new one by selecting the New... menu item from

the File menu, then selecting the Projects tab and choosing the MFC AppWizard item. Follow the Wizards
instructions to create the project. Be sure that you select the ActiveX Controls option for the question "What
other support would you like to include?"

· Select the Project menu
· Select the Add to project submenu, then select Components and Controls...
· In the Components and Controls Gallery dialog, look in the Registered ActiveX Controls folder for the

"Xceed Zip Control 4.0" or the "Xceed Compression control" entry, then select it and click on the Insert
button.

· Select the OK in response to the Insert this component? message box. The Confirm Classes dialog should
appear.

· Click OK to close the Confirm Classes dialog.
· Click the Close button to close the Components and Controls Gallery dialog.
· The XCEEDZIP.CPP and XCEEDZIP.H files should now be part of your project. You will now be able to

instantiate the Xceed Zip object in your project, and see the Xceed Zip icon available in your Controls
toolbar when designing dialog boxes.

xerNotLicensed constant

Value

530

Description

This error occurs when the Xceed Zip control is dynamically instantiated without calling License method.

Tips

You must call the license method in certain cases of dynamic instantiation. Please see the documentation's
License method topic to find out how to proceed.

xsrCentralHeaderNotFound constant

Value

119

Description

A file that was unzipped in unzip-without-last-disk mode did not to have an entry in the central directory.

Tips

The zip file is corrupted.

xsrCompress constant

Value

121

Description

An error occurred while the compression engine was compressing the file's data.

Tips

The file's data already written by the library is erased from the zip file.

xsrUncompress constant

Value

122

Description

An error occurred while the compression engine was uncompressing the file's data.

Tips

The file's compressed data is probably corrupted.

xsrUnzipDiskFull constant

Value

120

Description

The file could not be unzipped because the destination unzipping location's disk is full.

Tips

If the filesystem is not full, then you should check to make sure everything is working correctly with the drive, and
check if there are any security or permission problems for accessing this drive.

Creating a spanned zip file

One extra thing to do

Except for the basic things you have to do to zip or unzip a file, the only extra thing you have to do to create or
be able to unzip a spanned zip file is to write a handler for the InsertDisk event. The InsertDisk event is triggered
by the library when a new disk must be inserted into the removable media drive in order to continue reading or
writing a zip file. The Xceed Zip Compression Library never displays anything on the screen itself (a library
should never take that initiative) so you have to display the message box yourself. The advantage is that you get
to display whatever you want, any way you want it.
Here is sample code you can put in the InsertDisk event's handler for displaying a simple message box to insert
a new or specific disk:

If nDiskNumber = xcdLastDisk then
 MessageBox "Please insert the last disk of the zip file set."
Else
 MessageBox "Please insert disk " + Str(nDiskNumber)
 + " of the zip file set."
EndIf

When this is done, the library will automatically span disks when you are writing to floppy disks and they get full,
or will automatically request the appropriate disks when you are unzipping from a zip file that spans multiple
disks.
The Xceed Zip Compression Library can also read and write zip files that are split onto multiple files in the same
location (as opposed to a zip file split onto multiple disks). See the SplitSize property for information on how to
do this.

Adding a progress bar

One extra thing to do

Except for the basic things you have to do to zip or unzip a file, the only extra thing you have to do to add a
progress bar for the zip or unzip (or other) operation is to write a handler for GlobalStatus event which sets the
"percentage" property of your progress bar. The GlobalStatus event provides you with status information on the
entire zipping or unzipping operation, and one of the pieces of information it provides is the completion status,
ranging from 0 to 100%. If you want to know the status of the operation on a file-by-file basis, use the FileStatus
event instead.

Here is sample code you can put in the GlobalStatus event's handler:
MyProgressbar.value = nBytesPercent

The progress bar will then go from 0 to 100% as the zipping or unzipping is performed. You can reset it back to
0 after the library returns a result code from the zip or unzip method. The code is easy:

MyProgressbar.value = 0

That's it. Of course, you can do a lot more, so we do suggest you read the GlobalStatus property's help topic.

Macros for the self-extractor module properties

Some properties that used by the Self-Extractor Module allow macros to be used when specifying paths and
filenames. The macros available are listed in each property's description.
A macro is a substring of two characters that has the format %x. The x is a letter representing one of the available
macros (see below). The two characters representing the macro are replaced by a path only when the actual self-
extracting Zip file is executed. Thus, the value of a macro usually depends on the particular settings of the
Windows operating system the self-extracting Zip file is being run on.
All macros except for the %r macro include the drive as part of the path. The %v macro only contains the drive
letter followed by the colon (:) character. None of the macros contain a trailing backslash.
Macros used by SfxStrings and SfxMessages properties are special macros that apply only to those properties.
Only the macros common to multiple properties are listed below.

Here is a list of the common macros:

Macro Description
%w The location of the Windows folder.
%s The location of the Windows System folder.
%t The systems temporary folder.
%r Random folder name that doesn't already exist. (the format of the random name

is: _SFXxxx, where xxx is a random number)
%d The unzipping folder, or the user-selected folder where files were unzipped to.
%e The folder where the self-extractor is being run from.
%p The Program Files folder (only available in Windows 95 and NT 4.x and up).
%v The main system hard disk.

All macros except for the %r macro include the drive letter. The %v macro only contains the drive letter followed by
the colon (:) character. None of the macros contain a trailing backslash.

xcdCompressionLevel enumeration

xcdCompressionLevel
{

xclNone = 0,
xclLow = 1,
xclMedium = 6,
xclHigh = 9

}
This enumeration is used by the CompressionLevel property. Explanations on each parameter can be found in that
property's help topic.

xerProcessStarted constant

Value

1

Description

The method is executing its processing in the background.

Tips

When the BackgroundProcessing property is set to True, all Xceed Zip methods will return the xerProcessStarted
constant to indicate that they are performing their work in the background. The real return value of the method will
be provided by the ProcessCompleted event.

xsrSkipReplace constant

Value

14

Description

The file was skipped because the bReplaceFile parameter of the ReplacingFile event was set to False in the event
handler.

Tips

Verify the code you have placed in the ReplacingFile event handler.

ReplacingFile event

Description

The ReplacingFile event is triggered whenever a file is about to be overwritten in the unzipping destination, or in
the destination zip file.
The ReplacingFile event's bReplaceFile parameter allows you to determine whether or not to replace the file. The
default value of the bReplaceFile parameter is False, so if you do not write a handler for this event, files will
automatically be replaced. Setting the bReplaceFile parameter to True will cause the file to be overwritten.
Only the bReplaceFile parameter of the SkippingFile event is modifiable, all other parameters are there only to
provide information about the file about the new file and the destination file.
If you want to rename files that already exist in the destination, then you should use the ZipPreprocessingFile or
UnzipPreprocessingFile events. These events have a bExisting parameter which tells you whether or not the
destination file exists, and allows you to perform many possible actions, including renaming the file or changing its
path.

Declaration

Parameters in bold are modifiable
Event SkippingFile(sFilename As String, sComment As String, lSize As Long,
xAttributes As xcdFileAttributes, dtLastModified As Date, dtLastAccessed As Date,
dtCreated As Date, lDestSize As Long, xDestAttributes As xcdFileAttributes,
dtDestLastModified As Date, dtDestLastAccessed As Date, dtDestCreated As Date,
bReplaceFile as Boolean)
Parameters

Parameter Description
sFilename The path and filename of the destination file that may be replaced by the new file

that has the same path and filename.
sComment The new file's comment.
lSize The new file's uncompressed size in bytes.
xAttributes The new file's attributes.
dtLastModified The new file's last modification date and time stamp.
dtLastAccessed The new file's last accessed date and time stamp.
dtCreated The new file's creation date and time stamp.
lDestSize The destination file's uncompressed size in bytes.
iDestAttributes The destination file's attributes.
dtDestLastModified The destination file's last modification date and time stamp.
dtDestLastAccessed The destination file's last accessed date and time stamp.
dtDestCreated The destination file's creation date and time stamp.
bReplaceFile Set this to True (default) to replace the destination file by the new one, or set it to

False to keep the destination file.

ZipContentsStatus event

Description

The ZipContentsStatus event provides a status report when a zip file's contents are being scanned.
When a call is made to the Zip method to update or add files to an existing zip file, or when a call is made to the
Convert method, the library must scan the existing zip file's central directory. This operation, although not
processor or drive intensive, can still be lengthy when the zip file contains five to ten thousand files or more –
especially if the zip file is located on a floppy disk or other slow drive or network connection. Therefore, the
ZipContentsStatus event is useful in order to provide a progress or "working" indicator for this phase of the zipping
and unzipping.
If you aren't adding to, updating or converting an already existing (very large) zip file, then providing a progress
report with the GlobalStatus event is definitely sufficient.
None of the parameters are modifiable.

Declaration
Event ZipComment(lFilesTotal As Long, lFilesRead As Long, nFilesPercent As Integer)
Parameters

Parameter (Modifiable) Description
lFilesTotal Indicates the total number of files in the zip file that need to be scanned.
lFilesRead The current number of files
nFilesPercent The completion percentage (0% to 100%) based on how many files have been

scanned so far.

Remarks

For zip files with 100 or more files in them, this event is triggered up to a maximum of 101 times (this reduces this
event's overhead to negligible levels). In fact, it is triggered once for each possible value of the nFilesPercent
parameter (from 0% to 100%). If the zip file has less than 100 files, it will be triggered once for each file in the zip
file.

Applicable methods

Zip, ListZipContents

BackgroundProcessing property

Example

Description

The BackgroundProcessing property controls whether or not Xceed Zip methods are executed immediately or are
run as background processes.
Normally this property is set to False, so method calls are not executed as background processes, and the entire
operation is processed immediately and returns the real result code for the operation. When the
BackgroundProcessing property is set to True, the operation starts immediately, however the ResultCode is also
immediately set to xerProcessStarted and the code following the method call is executed. When the zip operation
finally completes, the ProcessCompleted event is triggered, and provides the real result code for the operation, as
well as statistics on the operation.

Data type

Boolean

Default value

False

Remarks

A separate thread is started by the library in order to accomplish the capability provided by setting this property to
True. This property is useful when you need methods to be executed asynchronously.

Applicable methods

All methods except for the AddFilesToProcess, AddFilesToExclude, AddExtentionToAssociate and
AddProgramGroupItem methods, which don't launch an operation at all.

BackgroundProcessing property example

As an example, consider that if the BackgroundProcessing property is left at its default value of False, and you
run the Zip method, with code similar to this:

XceedZip1.FilesToProcess = "c:\my files*"
...set other Xceed Zip properties
ResultCode = XceedZip1.Zip
...the rest of your code follows here

…the complete zip operation will be completed, then the ResultCode variable will be set to a value indicating
whether or not the operation was succesful, and then the rest of your code will be executed.
However, if the BackgroundProcessing property is set to True, running the same code above will cause the zip
operation to start, will immediately set the ResultCode variable equal to xerProcessStarted, will execute the rest of
the code after the "ResultCode = XceedZip1.Zip" line, and later, when the zipping operation has completed, will
trigger the ProcessCompleted event to let you know that it is finished, and to provide you with the result code (via
the xResult parameter).

xceSuccess constant

Value

0

Description

This value indicates that the method's process executed 100% successfully.

xceSessionOpened constant

Value

1000

Description

The Compress (or Uncompress) methods were called one or more times with the bEndOfData parameter set to
False, but were not called with the bEndOfData parameter set to True before a call to the Uncompress (or
Compress) method was placed.

Tips

You must terminate a Compress or Uncompress session with the bEndOfData parameter set to True.

xceInitCompression constant

Value

1001

Description

The compression engine failed to initialize.

Tips

This is a critical error, unexplained error. Contact Xceed Software for further instructions if you get this error code.

xceCompression constant

Value

1003

Description

The compression or decompression engine returned an error.

Tips

If you are uncompressing data, the data may be corrupted, or it has been altered in some way from the time that it
was obtained by the Compress method. Verify that the compressed data you are getting from the Compress
method is exactly the same as the compressed data you are passing to the Uncompress method (bit for bit).
If you are compressing data, this should not happen (but is a possibility). Contact Xceed Software if it does. You
may be passing an invalid type data type to the Compress method.

xceInvalidPassword constant

Value

1004

Description

The password provided in the EncryptionPassword property is invalid for the data passed to the Uncompress
method.

xceChecksumFailed constant

Value

1005

Description

The 32-bit checksum calculated for the newly uncompressed data does not match the checksum value stored with
the data.

Tips

The compressed data is either corrupted, or it has been altered in some way from the time that it was obtained by
the Compress method. Verify that the compressed data you are getting from the Compress method is exactly the
same as the compressed data you are passing to the Uncompress method (bit for bit).

xceDataRemaining constant

Value

1006

Description

The compressed data passed to the Uncompress method was succesfully uncompressed by the compression
engine and passed the CRC test, however, not all the compressed data was used in order to produce the
uncompressed output. In other words, the decompression engine expected less data than the amount passed to it.

Tips

Either too much data is being passed to the Uncompress method (you are providing extra, unnecessary data after
the compressed data) or the data may possibly be corrupted (although this latter possibility is unlikely due to the
checksum verification step).

CalculateCrc method

Description

The CalculateCrc method is provided as a convenience feature for developers that need to calaulate a CRC on
data without compressing it at all. The checksum provided by the CalculateCrc method is the industry standard
CRC-32 checksum used by the Zip format and the Zmodem communications protocol, for example.
This method allows you to calculate the CRC for an entire block of data in one call, or you can call it multiple
times.

Declaration
Method CalculateCrc(vaData As Variant, lPreviousCrc As Long) As Long.
Parameters

Parameter Description
vaData The data to calculate the CRC-32 for. This is a variant of type string or byte array.
lPreviousCrc When you call the CalculateCrc method and require the CRC-32 for an entire

block of data, set this parameter to 0. This parameter is mainly used when you
are making multiple calls to the CalculateCRC method for a very large block of
data, or for streaming data. The return value of the previous CalculateCrc method
call should be provided in this parameter so that the CRC-32 can continue to be
updated for the rest of the data.

Return values

The return value contains the CRC-32 calculated for the data.

Applicable properties

None.

About the sample applications

If the getting started quickly section has topics that tell you what you have to do to accomplish basic compression-
related tasks. However, real applications often have tougher problems to solve.
Xceed has provided you with various flavors of sample applications, to help you out.
The first type of sample application is named the Getting Started Sample Application. This sample application with
source code is provided for various development environments, and provides you with a visual application that
shows you, method-by-method, property-by-property, how to use the most important features of the library.

· Go to the Getting Started Sample Application for VB5 and VB6 topic
The second type of sample application is named the Zip Manager Sample Application. This is a complete Zip file
manipulation application that can also create self-extracting zip files. It's kind of like WinZip™, but Xceed doesn't
sell it, and you get the fully commented source code.

· Go to the Zip Manager Sample Application for VB5 and VB6 topic
Also included are sample applications to show C++ users how to use the controls to sink events in ATL and
compress in memory compression.

· Go to the Visual C++ samples topic

About the getting started quickly section

This section of the manual has but one goal: To show you, as fast as possible, how to start using the library's
major features.
If you don't see what you need here, the next step is to read the overview of the Xceed Zip control. From there you
will probably jump to the methods or properties topic. If all else fails, use the "search" feature of the manual, or
browse the sample applications. Feel free to contact Xceed Software at any time if you have questions.

Getting started quickly topics

· Zipping files
· Unzipping files
· Listing the contents of a zip file
· Creating or unzipping a spanned zip file
· Adding a progress bar
· Creating a new self-extracting zip file
· Converting a zip file to self-extracting
· Zipping from memory to a zip file
· Unzipping from a zip file to memory
· Compression entirely in memory

Unzip method example for VB

The following code uses the Unzip method to unzip the file "README.TXT" from the zip FILE "C:\TEST\MY TEST.ZIP"
into the directory "C:\TEST\UNZIPPED FILES". If the directory does not already exist, it will be created automatically.
You should check the Unzip method's return value once you are done – if it is xerSuccess, the operation was
succesful. Otherwise, look up the error code in the error codes list to find out what went wrong. This code
assumes you have a button and an Xceed Zip control on a form, named Command1 and XceedZip1 respectively.

Sub Command1_Click()
 Dim ResultCode As xcdError
 ' All properties keep their default values except the four below
 XceedZip1.FilesToProcess = "readme.txt" ' The file to unzip
 XceedZip1.PreservePaths = False ' In case file is stored in the
 ' zip file with a path, we need to make sure the path is
 ' removed so that the file will match with "readme.txt"
 XceedZip1.UnzipToFolder = "c:\test\unzipped files"
 XceedZip1.ZipFilename = "c:\test\my test.zip"
 ' Start unzipping
 ResultCode = XceedZip1.Unzip
 ' Check the return value.
 If ResultCode <> xerSuccess Then
 MsgBox "Unsuccessful. Error # " + Str(nErr) + " occurred. " +
 "Description: " + XceedZip1.GetErrorDescription(xvtError,

ResultCode)
 Else
 MsgBox "File(s) successfully unzipped."
 End If
End Sub

Unzip method example for Delphi

The following code uses the Unzip method to unzip the file "README.TXT" from the zip file "C:\TEST\MY TEST.ZIP"
into the directory "C:\TEST\UNZIPPED FILES". If the directory does not already exist, it will be created automatically.
You should check the Unzip method's return value once you are done – if it is xerSuccess, the operation was
succesful. Otherwise, look up the error code in the error codes list to find out what went wrong. This code
assumes you have a button and an Xceed Zip control on a form, named Button1 and XceedZip1 respectively.

procedure TForm1.Button1Click(Sender: TObject);
var
 ResultCode: xcdError;
begin
 { All properties keep their default values except the four below }
 XceedZip1.FilesToProcess := 'readme.txt'; { The file to unzip }
 XceedZip1.PreservePaths := False; { In case file is stored in the zip file

with a path, we need to make sure the path is removed so that the file
will match with 'readme.txt' }

 XceedZip1.UnzipToFolder := 'c:\test\unzipped files';
 XceedZip1.ZipFilename := 'c:\test\my test.zip';
 { Start unzipping }
 ResultCode := XceedZip1.Unzip;
 { Check the return value. If ResultCode = xerSuccess, it worked }
end;

RemoveFiles method example for VB

The following code deletes all files ending with ".TXT" from the zip file named "C:\TEST\MY TEST.ZIP". The example
assumes you have a button and an Xceed Zip control on a form named Command1 and XceedZip1 respectively.

Sub Command1_Click()
 Dim ResultCode As xcdError
 ' All properties keep their default values except the two below
 XceedZip1.FilesToProcess = "*.txt"
 XceedZip1.ZipFilename = "c:\test\my test.zip"
 ' Start the delete operation
 ResultCode = XceedZip1.RemoveFiles
 ' Check the return value.
 If ResultCode <> xerSuccess Then
 MsgBox "Unsuccessful. Error # " + Str(nErr) + " occurred."
 Else
 MsgBox "File(s) succesfully deleted."
 End If
End Sub

RemoveFiles method example for Delphi

The following code deletes all files ending with ".TXT" from the zip file named "C:\TEST\MY TEST.ZIP". The example
assumes you have a button and an Xceed Zip control on a form named Button1 and XceedZip1 respectively.

procedure TForm1.Button1Click(Sender: TObject);
var
 ResultCode: xcdError;
begin
 { All properties keep their default values except the two below }
 XceedZip1.FilesToProcess := '*.txt';
 XceedZip1.ZipFilename := 'c:\test\my test.zip';
 { Start the delete operation }
 ResultCode := XceedZip1.RemoveFiles;
 { Check the return value. If ResultCode = xerSuccess, it worked }
end;

ListZipContents method and ListingFile event example for VB

The first function of the following code lists all the files in the zip file "C:\TEST\MY TEST.ZIP" that finish with ".TXT".
For each file listed, the ListingFile event will be triggered. The second function below is a handler written for the
ListingFile event that displays each file listed, along with some other of the file's information, in a listbox. The code
assumes you have placed a button, a listbox and an Xceed Zip control on a form, and named them Command1,
List1 and XceedZip1 respectively.

We start with the handler for the button's click event. The code will start the listing.

Sub Command1_Click()
 Dim ResultCode As xcdError
 ' All properties keep their default values except the two below
 XceedZip1.FilesToProcess = "*.txt" ' process only .txt files
 XceedZip1.ZipFilename = "c:\test\my test.zip"
 ' Start listing
 ResultCode = XceedZip1.ListZipContents
 ' Check the result code to make sure it worked properly
 If (ResultCode <> xerSuccess) Then
 List1.AddItem "Errors/warnings received, or a file was skipped."
 End If
End Sub

And here's the handler for the ListingFile event. It will add each file's name and info to the listbox.

Private Sub XceedZip1_ListingFile(ByVal sFilename As String, ByVal sComment As
String, ByVal lSize As Long, ByVal lCompressedSize As Long, ByVal
nCompressionRatio As Integer, ByVal xAttributes As
XceedZipLibCtl.xcdFileAttributes, ByVal lCRC As Long, ByVal dtLastModified
As Date, ByVal dtLastAccessed As Date, ByVal dtCreated As Date, ByVal
xMethod As XceedZipLibCtl.xcdCompressionMethod, ByVal bEncrypted As
Boolean, ByVal lDiskNumber As Long, ByVal bExcluded As Boolean, ByVal
xReason As XceedZipLibCtl.xcdSkippingReason)

 List1.AddItem "Filename: " + sFilename
 List1.AddItem " Uncompressed size: " + Str(lSize)
 List1.AddItem " Compressed size: " + Str(lCompressedSize)
 List1.AddItem " Compression ratio: " + Str(nCompressionRatio)
End Sub

ListZipContents method and ListingFile event example for Delphi

The first function of the following code lists all the files in the zip file "C:\TEST\MY TEST.ZIP" that finish with ".TXT".
For each file listed, the ListingFile event will be triggered. The second function below is a handler written for the
ListingFile event that displays each file listed, along with some other of the file's information, in a listbox. The code
assumes you have placed a button, a listbox and an Xceed Zip control on a form, and named them Command1,
ListBox1 and XceedZip1 respectively.

We start with the handler for the button's click event. The code will start the listing.

procedure TForm1.Button1Click(Sender: TObject);
var
 ResultCode: xcdError;
begin
 { All properties keep their default values except the two below }
 XceedZip1.FilesToProcess := '*.txt';
 XceedZip1.ZipFilename := 'c:\test\my test.zip';
 { Start listing }
 ResultCode := XceedZip1.ListZipContents;
 { Check the result code to make sure it worked properly }
 if (ResultCode <> xerSuccess) then
 begin
 Listbox1.Items.Add('An error or warning occured, or files were

skipped.');
end;

 end;

And here's the handler for the ListingFile event. It will add each file's name and info to the listbox.

procedure TForm1.XceedZip1ListingFile(XceedZip: TXceedZip;
 const FileStats: TXcdFileStats);
begin
 ListBox1.Items.Add('Filename: ' + sFilename);
 ListBox1.Items.Add(' Uncompressed size: ' +
 IntToStr(lSize));
 ListBox1.Items.Add(' Compressed size: ' +
 IntToStr(lCompressedSize));
 ListBox1.Items.Add(' Compresion ratio: ' +
 IntToStr(nCompressionRatio));
end;

Installation instructions index

The Xceed Zip Compression Library setup utility will copy all the necessary files into the installation directory you
selected and registered the XCEEDZIP.DLL ActiveX control in your Windows System folder. There are some
additional steps you must take to complete the installation, based on which development language you are using.
Click on one of the following links for instructions specific to your language.

· Installation instructions for Visual Basic 4.0 (32-bit)
· Installation instructions for Visual Basic 5.0
· Installation instructions for Visual Basic 6.0
· Installation instructions for Visual C++ 4.0 (MFC)
· Installation instructions for Visual C++ 5.0 (MFC)
· Installation instructions for Visual C++ 6.0 (MFC)
· Installation instructions for Word 97 and Excel 97
· Installation instructions for Access 97
· Installation instructions Visual FoxPro 5.0 and 6.0
· Installation instructions Delphi 3.0
· Installation instructions Delphi 4.0
· Installation instructions C++ Builder 3.0
· Installation instructions C++ Builder 4.0
· Installation instructions for other 32-bit development environments

xceNotLicensed constant

Value

1007

Description

This error occurs when the Xceed Compression control is dynamically instantiated without calling the License
method.

Tips

You must call the license method in certain cases of dynamic instantiation. Please see the documentation's
License method topic to find out how to proceed.

xceBusy constant

Value

1008

Description

The current instance of the library is already running another operation.

Tips

Although the library is fully multi-threaded, each instance of the Xceed Compression control can only do one
operation at a time. This makes event handling much clearer. The developer can create another instance of the
library if it is necessary to do another, independent zipping or unzipping operation simultaneously.

Samples for Visual C++ users

Memory compression sample

The sample is located in "C:\PROGRAM FILES\XCEED ZIP\SAMPLES\OTHER\VC6\MEMORY COMPRESSION".

To use the "Memory Compression" sample, you will need Microsoft Visual C++ 6.0. The sample demonstrates how
to:

· Import Xceed Zip's type library in a C++ project
· How to implement an event sink using ATL
· Perform memory compression with the Xceed Zip control

To use the sample, proceed as follows:
· Open the "MEMORY COMPRESSION.DSW" file in the MSVC IDE.
· The files XCEEDZIP.DLL and ZIPDISPIDS.H must be made available in the include path in order to compile

the project. Current project settings include "\XCEEDZIP" in the include path, so you can either copy the two
required files to this folder, or modify the include path accordingly.

· All the important calls are implemented in "MEMORY COMPRESSION.CPP".

Importing the type library

· The first thing that the sample demonstrates is how to import XceedZip's type library in a C++ project. The
line "#import "XCEEDZIP.DLL" generates XCEEDZIP.TLH, which is the header file containing the declarations
for the enumerations, classes, and other things contained in the type library. It also generates XCEEDZIP.TLI,
which is the implementation of the methods declared in XCEEDZIP.TLH. Complete documentation on the
#import directive can be found in the MSVC documentation.

· Looking at the main function shows how the wrapper classes generated by the #import directive can be
used.

· Up to this point, we only used MSVC features (#import is a Microsoft C++ extension), with no MFC or ATL
specific features.

Event sinking

· The second thing that the sample demonstrate is how to implement an event sink using ATL.
· We first need to include ATL's main header files. Look at stdafx.h, between the BEGIN/END ATL

REQUIRED comments.
· Then, we need to declare a class that will derive either from IDispEventImpl<> or IDispEventSimpleImpl<>.

The major difference between these two class templates is that the former uses information from the type
library to determine the event handlers' information (return and parameter types), while the latter gets this
information from user-provided structures.

· With Xceed Zip, we use IdispEventSimpleImple<> because we use enumeration types in many of the
events, and IdispEventImpl<> does not handle that correctly.

· The first thing to do to implement an event is to add a member function to the sink class. This function must
use _stdcall calling convention, and must be declared exactly as the event is defined in the event interface.
Tip: you can copy/paste the declaration from XCEEDZIP.TLH.

· Next, a _ATL_FUNC_INFO structure must be declared for each event handler. This structure specifies the
return and parameter types for the handler.

· Finally, a SINK_MAP must be declared in the sink class, using ATL macros. Each event handler in the sink
class must be provided through a SINK_ENTRY_INFO() entry in the sink map.

· To use the sink object, all that needs to be done is to call DispEventAdvise() with a pointer to the object
from which the events need to be handled.

xerInvalidSfxProperty constant

Value

531

Description

The SfxProgramGroupItems or the SfxExtensionsToRegister property contains an invalid item.

Tips

Verify that the string is properly formatted and that each item is separated by a vertical bar "|", a linefeed, or the
return+linefeed characters.

Getting Started Sample App for Delphi 3 and 4

The Getting Started Sample Application for Delphi 3.0 and Delphi 4.0 can be found in the C:\PROGRAM FILES\
XCEED ZIP\SAMPLES\GETTING STARTED\DELPHI3 folder (or the DELPHI4 folder).
To use the sample, load the STARTED.DPR project file, then run the program. The application itself explains
everything to you on screen and with the help of pop-up tooltip boxes when you move the mouse over the controls
in run mode.

Running multiple operations at the same time

The Xceed Zip Compression Library v4.0 ActiveX control supports both the Single-Threaded Apartment model
(STA) and the Multi-Threaded Apartment model (MTA). The entire library's code is threadsafe, can be instantiated
multiple times in order to perform multiple zip file manipulation operations at the same time, and is designed to use
very little memory per instance – so your machine won't run out of memory when you're running dozens of
instances at the same time.
The library also supports background processing. Background processing is a different concept than running
multiple instances simultaneously. See the background processing property topic for details.

Any restrictions?

Yes, two small restrictions. First: two or more instances may not add files to, or create the same zip file located in
the same folder. Second: each instance of the Xceed Zip control can only execute one process at a time. This
makes sense, because if it was possible for a single instance to run more than one operation at a time, you would
get the same event from two processes and wouldn't know for which process you are getting the event. Running
multiple simultaneous operations involes having multiple instances, with each instance running its own operation.

How is it done?

If you're using forms in your application, you can place multiple Xceed Zip control objects on your form, call them
XceedZip1, XceedZip2, XceedZip3, etc. Each control on the form is a separate instance of the library. Therefore,
each instance's methods can be called simultaneously and can each process at the same time.
For example, place 4 Xceed Zip controls on a form, with 4 buttons, and 4 progress bars. For the click event of
Button1, add code to zip up a file that refering to the XceedZip1 control. Set Button1's caption to the return value
so you can know when it finished. In the XceedZip1 control's GlobalStatus event, set ProgressBar1's value to the
nBytesPercent parameter provided to you by the GlobalStatus event. Do this 4 times, changine Button1 for
Button2, XceedZip1 for XceedZip2, and ProgressBar1 for ProgressBar2. Make sure each button works on a
different zip file! Now run your program, and click on each button one after the other. If you are zipping up enough
files, each progress bar should be moving along at its own pace.
If you're using code, it's pretty much the same concept: Instantiate the control multiple times and instruct each
instance to do whatever you want it to. In VB, to create multiple instances of the control, you can do this (this
example can be generalized to more objects to n by using arrays):

' Make sure you added the Xceed Zip control to your object references. To do
this, go to the Project menu and select the "References..." menu item,
then checkmark the Xceed Zip Compression Library v4.0 entry in the list of
components.

' Here we define the types for our variables
Dim WithEvents MyZipInstance1 As XceedZip
Dim WithEvents MyZipInstance2 As XceedZip
Dim WithEvents MyZipInstance3 As XceedZip
Dim WithEvents MyZipInstance4 As XceedZip
Dim ResultCode1 As xcdError
Dim ResultCode2 As xcdError
Dim ResultCode3 As xcdError
Dim ResultCode4 As xcdError
' Now we instantiate each variable with an Xceed Zip control
Set MyZipInstance1 = New XceedZip
Set MyZipInstance2 = New XceedZip
Set MyZipInstance3 = New XceedZip
Set MyZipInstance4 = New XceedZip
' Because we are running all 4 simultaneously from sequential code, we'll turn

on background processing so that each of the following 4 lines is
immediately executed, instead of first running the first line, waiting for
it to complete, then running the second line, etc.

XceedZip1.BackgroundProcessing = True

XceedZip2.BackgroundProcessing = True
XceedZip3.BackgroundProcessing = True
XceedZip4.BackgroundProcessing = True
' Lets set our zip files to work with
XceedZip1.ZipFilename = "c:\temp\zipfile1.zip"
XceedZip2.ZipFilename = "c:\temp\zipfile2.zip"
XceedZip3.ZipFilename = "c:\temp\zipfile3.zip"
XceedZip4.ZipFilename = "c:\temp\zipfile4.zip"
' Which files to zip up
XceedZip1.FilesToProcess = "c:\temp\folder1*"
XceedZip2.FilesToProcess = "c:\temp\folder2*"
XceedZip3.FilesToProcess = "c:\temp\folder3*"
XceedZip4.FilesToProcess = "c:\temp\folder4*"
' Start all the zipping! (All resultcodes should = xecProcessStarted
ResultCode1 = XceedZip1.Zip
ResultCode2 = XceedZip1.Zip
ResultCode3 = XceedZip1.Zip
ResultCode4 = XceedZip1.Zip
' The rest of your code will continue executing, too. The only thing left is

to write a handler for the ProcessCompleted event for each Xceed Zip
instance, so you can get the xResult variable which will provide you with
the real return value for each of the 4 zip calls above.

Formless use of the control

You can instantiate the ActiveX control without putting it on a form. To do this, make the control available in your
development environment (this should already have been done if you followed the installation instructions) and
simply create an instance of the object like you would any other variable. The object's type is "XceedZip".

Example for VB users:
' Make sure you added the Xceed Zip control to your object references. To do

this, go to the Project menu and select the "References..." menu item,
then checkmark the Xceed Zip Compression Library v4.0 entry in the list of
components.

' Here we define the type for our variable
Dim WithEvents MyZipInstance1 As XceedZip
 ' Now we instantiate the variable with an Xceed Zip control instance
Set MyZipInstance1 = New XceedZip
 ' And now we can work as usual...
XceedZip1.ZipFilename = "c:\temp\zipfile1.zip"
XceedZip1.FilesToProcess = "c:\temp\folder1*"
ResultCode1 = XceedZip1.Zip
...

GetZipFileInformation method example for VB

This example gets information for the zip file named "C:\TEST\MY ZIP FILE.ZIP", and puts the data in various
variables that you can use. The example assumes you have placed a button, a listbox and an Xceed Zip control
on a form, named Command1, List1 and XceedZip1 respectively.

Private Sub Command1_Click()
 Dim TotalFiles As Long
 Dim CompressedBytes As Long
 Dim UncompressedBytes As Long
 Dim CompressionRatio As Integer
 Dim IsZipFileSpanned As Boolean
 Dim ResultCode As xcdError
 ' Set the zip file name (the only property required to be set here)
 XceedZip1.ZipFilename = "c:\test\My zip file.zip"
 ' Get the information
 ResultCode = XceedZip1.GetZipFileInformation(TotalFiles, CompressedBytes,

UncompressedBytes, CompressionRatio, IsZipFileSpanned)
 ' Check the return value
 If ResultCode <> xerSuccess Then
 List1.AddItem "Unsuccessful. Error #" + Str(ResultCode)
 Else
 List1.AddItem "Successfully retrieved the zip file's info"
 List1.AddItem "Total number of files: " + Str(TotalFiles)
 List1.AddItem "Compressed size: " + Str(CompressedBytes)
 List1.AddItem "Uncompressed size: " + Str(UncompressedBytes)
 List1.AddItem "Ratio: " + Str(CompressionRatio)+ "%"
 List1.AddItem "Spanned: " + Str(IsZipFileSpanned)
 End if
End Sub

GetZipFileInformation method example for Delphi

This example gets information for the zip file named "C:\TEST\MY ZIP FILE.ZIP", and puts the data in various
variables that you can use. The example assumes you have placed a button, a listbox and an Xceed Zip control
on a form, named Button1, List1 and XceedZip1 respectively.

procedure TForm1.Button1Click(Sender: TObject);
var
 TotalFiles : Integer;
 CompressedBytes : Integer;
 UncompressedBytes : Integer;
 CompressionRatio : SmallInt;
 IsZipFileSpanned : WordBool;
 ResultCode : xcdError;
begin
 ' Set the zip file name (the only property required to be set here)
 XceedZip1.ZipFilename := 'c:\test\My zip file.zip';
 ' Get the information
 ResultCode := XceedZip1.GetZipFileInformation(TotalFiles, CompressedBytes,

UncompressedBytes, CompressionRatio, IsZipFileSpanned);
 ' Check the return value
 If ResultCode <> xerSuccess Then
 ListBox1.Items.Add("Unsuccessful. Error #" + Str(ResultCode)
 else
 begin
 ListBox1.Items.Add("Successfully got the zip file's info");
 ListBox1.Items.Add("Total files: " + IntToStr(TotalFiles));
 ListBox1.Items.Add("Comp. size: " + IntToStr(CompressedBytes));
 ListBox1.Items.Add("Size: " + IntToStr(UncompressedBytes));
 ListBox1.Items.Add("Ratio: " + IntToStr(CompressionRatio)+"%");
 ListBox1.Items.Add("Spanned: " + IntToStr(IsZipFileSpanned));
 end;
end;

GetErrorDescription method

Description

The GetErrorDescription method returns a text description of an xcdError, xcdWarning or xcdSkippingReason
enumeration member.
This method is particularly useful in order to translate an error, warning or skipping reason code into english text in
order to display a more detailed error than just the value of the error, warning or skipping reason code.
For example, to assign the description of the xerReadZipFile (505) error to a string, do this:

DescribeError = XceedZip1.GetErrorDescription(xvtError, 505);
or
DescribeError = XceedZip1.GetErrorDescription(xvtError, xerReadZipFile);

Declaration
Method GetErrorDescription(xType As xcdValueType, lValue As Long) As String
Parameters

xType
This parameter determines the category (error, warning or skipping reason) for the value of the lValue
parameter.

lValue
The value of the enumeration member to get a text description of.

Return values

Returns the string containing the text description. If a non-existent member value is passed in the lValue
parameter, an empty string will be returned.

xcdValueType enumeration

xcdValueType
{

xvtError = 0,
xvtWarning = 1,
xvtSkippingReason = 2,

}
This enumeration is used by the GetErrorDescription method. Explanations for each value can be found in the
GetErrorDescription method's topic.

About the CAB file

The XCEEDZIP.DLL is also provided as a digitally signed (with Microsoft Authenticode and VeriSign certificate) .CAB
file. You can find the .CAB file in the BIN folder where you installed Xceed Zip v4.0.

Why a CAB file?

A .CAB file is known as a "cabinet" file. A cabinet file is a Microsoft-designed archive file format that's designed to
pack multiple compressed files into a single file with a .CAB file extension. Cabinet files are used by some install
programs (for example, Microsoft's Windows 98 "setup" program), and are also used to facilitate internet
deployment of components and controls.
A .CAB file can contain an ActiveX control and all required DLLs and resources that the ActiveX control needs.
In the case of the XCEEDZIP.DLL, which is fully self-contained and does not require any other DLLs or resources,
the .CAB file provided with this library is useful only to developers that are using the component on an HTML page.
The .CAB file contains a compressed version of the XCEEDZIP.DLL, so it's smaller and reduces the download time
for a browser that's receiving the HTML page and the control on the page. The .CAB file, like the XCEEDZIP.DLL file,
is digitally signed with Microsoft Authenticode, so browsers won't complain about security issues.

Other remarks

The .CAB file contains an .INF file that Internet Explorer knows how to handle. This .INF file tells Internet Explorer
how to install the correct version of the required DLLs in the appropriate location on the user's system.
When you are designing Active Server Page projects, there is no need for the .CAB file because the component
stays on the server machine and is

About Migration

Thoughout the evolution of the Xceed Zip Compression Library, up until version 4.0, all 16 and 32-bit components
shared the same programmatic interface. That means that as new components and features were added and
Xceed Zip evolved from versions 1.0 to 3.5, all the controls offered by the library were programmed using the
same properties, methods and events. When a new feature was added, and even when 32-bit support was
introduced, Xceed Zip users required no modifications to their code.
For the Xceed Zip v4.0, which is an entirely new product based on a different programming paradigm and
compression engine, an entirely new programming interface was designed and implemented. Xceed Zip v4.0 has
some fundamental differences with Xceed Zip v3.5 in the way that it processes files, scans drives, fires events and
handles the compressed data. Changing the programming interface has brought some definite advantages to the
library. Xceed Zip v4.0's new interface offers developers a lot more flexibility and control, yet is more easier to use
than ever. New users will get started faster, and veterans will enjoy the new flexibility offered by the library.
New Xceed Zip v4.0 ActiveX control follows the COM standard and all new versions and releases will remain
compatible with the existing published interfaces. In no event shall the updating of the XCEEDZIP.DLL file affect
existing applications.
The properties, methods and events used for Xceed Zip versions 1.0 to 3.5 have changed for Xceed Zip 4.0.
Some have simply been renamed. Others no longer exist, and many work differently. If your existing applications
that use Xceed Zip 1.0 to 3.5 wish to use the new features of Xceed Zip 4.0, some of your code must be modified.
The "Migration" section of the Xceed Zip 4.0 manual will guide you through the changes you must make in order to
get your code ready for using the new Xceed Zip 4.0 ActiveX control.
The code changes are outlined by the following topics:

· FilesToProcess property migration
· Other properties migration
· Other properties (SFX) migration
· Methods migration
· Events migration

FilesToProcess property migration

The most notable change when migrating your code to v4.0 concerns the FilesToProcess property. The following
sections describe the changes to the FilesToProcess property that you must be aware of.

Wildcards

Wildcards specified in Xceed Zip v3.5's FilesToProcess property were used in order to determine which subfolders
should be scanned when the Recurse property is set to True. For Xceed Zip version 4.0, wildcards are no longer
used to determine which subfolders are scanned. You will also see later that the Recurse property has been
renamed to ProcessSubfolders for Xceed Zip v4.0.
The new behavior for the FilesToProcess property has eliminated the need for the "Include only" character (>) that
was often required when specifying wildcards to the FilesToProcess property. The new behavior is also more
intuitive.
Example: with Xceed Zip v3.5 and before, if you wanted to zip all the .TXT files in the C:\DATA and all its subfolders,
you had to use the following code:

XceedZip1.Recurse = True
XceedZip1.FilesToProcess = "C:\DATA*" + vbCR + ">*.TXT"

This was necessary because if you only specified "C:\DATA*.TXT", Xceed Zip v3.5 would not scan subfolders
because none of them would match "*.TXT". So, you had to specify that you wanted ALL files in C:\DATA, and that
among those files, include only those that end with .TXT. With Xceed Zip v4.0, to accomplish the same task, use
the following code:

XceedZip1.ProcessSubfolders = True
XceedZip1.FilesToProcess = "C:\DATA*.TXT"

Excluded files

The FilesToProcess property no longer supports the "Exclude files" character (<) that could be specified in front of
filenames specified to this property. You must use the FilesToExclude property now.

Other properties migration

Old property Changes to note
ClearDisks This property no longer exists. The DiskNotEmpty event is now triggered

whenever a disk with already existing data is inserted. Setting it's xAction
parameter will allow you to chose the action (including clearing the disk) to take.

Compression Renamed to CompressionLevel
ExtractDirectory Renamed to UnzipToFolder
FileCount This property no longer exists. The GetZipFileInformation method allows you to

retrieve the file count and other information from a zip file.
Recurse Renamed to ProcessSubfolders. All subfolders encountered are now scanned,

regardless of whether the subfolder's name matches a wildcard. (For more details
see the FilesToProcess property migration topic)

FilesToProcess Behavior has been modified. See the FilesToProcess property migration topic.
IncludeDirectoryEntries,
IncludeVolumeLabel,
IncludeHiddenFiles These properties no longer exist. The RequiredFileAttributes and

ExcludedFileAttributes properties are now used to determine which file attributes
to include or exclude from the list of files to process. The default value of
ExcludedFileAttributes property is xfaFolder + xfaVolume, which is the equivalent
of:

IncludeDirectoryEntries = False
IncludeVolumeLabel = False
IncludeHiddenFiles = True

So if your existing code has any of these properties to False, make sure that the
attribute is placed in ExcludedFileAttributes – otherwise, the corresponding file
type will be included.

ModifiedDate Renamed to MinDateToProcess.
MoveFiles This property no longer exists. Use the FileStatus event to obtain the filenames of

files you wish to delete, and if the Zip method's return value is xerSuccess, then
you can delete the files.

MultidiskMode Renamed to SpanMultipleDisks and changed behavior. The new property only
applies when zipping, and is no longer necessary when unzipping, listing or
testing.

Overwrite This property no longer exists. The SkipIfExisting property now determines
overwrite behavior.
If your code had Overwrite = xowNever, it should now use SkipIfExisting = True. If
you had Overwrite = xowAlways or xowAsk, it should now be SkipIfExisting =
False. In the case of SkipIfExisting = False, the ReplacingFile event is triggered
to allow you to prompt the end-user what to do. See the SkipIf* properties for
more options.

Password Renamed to EncryptionPassword.

Methods migration

Old method Changes to note
Add Renamed to Zip. No longer takes any parameters. Use the SkipIf* properties to

reproduce the Add method's parameters. For example:

Before: Add(xecAll)
After: Zip

Before: Add(xecFreshen)
After: SkipIfNotExisting = True

Zip

Before: Add(xecUpdate)
After: SkipIfExisting = True

Zip
Delete Renamed to RemoveFiles.
Extract Renamed to Unzip. Use the SkipIf* properties to reproduce the Extract method's

parameters. See the description for the Add method above for an example.
Fix This method no longer exists. The new library will unzip everything it can from a

corrupted zip file – there's no need to fix and unzip in two separate operations.
However, the Convert method will allow you to repair a corrupted zip file if you
still need this functionality.

GetFileInfo This method no longer exists. You get information on a file by using the
ListZipContents method and specifying the filename in the FilesToProcess
property. The ListingFile event provides you with the info.

List Renamed to ListZipContents.
MakeSelfExtracting This method no longer exists. The Convert method allows you to (among other

things) perform the same conversion operation. Example:

Before: ZipFileName = "this.zip"
SelfExtracting = True
SfxBinary = "xcdsfx32.bin"
MakeSelfExtracting

After: ZipFileName = "this.zip"
SfxBinaryModule = "xcdSfx32.bin"
Convert("that.exe")

MemCompress,
MemOriginalSize,
MemUncompress,
StringCompress,
StringUncompress The Xceed Compression control object now handles in-memory compression and

decompression. Refer to that object for equivalent methods.
SfxResetDefaultStrings Now divided into three methods called SfxResetButtons, SfxResetMessages and

SfxResetStrings.
Test Renamed to TestZipFile. You can now pass a parameter so you can control

whether to test the zip structure only, or the zip structure and the integrity of the
compressed data.

UpdateZipDate This method no longer exists.

Events migration

All events have changed. It is recommended to reimplement events instead of renaming them. The parameters will
all be properly set by your development language. Move your code as described here:

Old event Changes to note
Adding Move the status messages from this event to the FileStatus event. In the

FileStatus event, you can consult the CurrentOperation property to customize
your message depending on what you're doing. When the lBytesProcessed
parameter = 0, the operation on that file is about to begin.

Deleting Move status messages to the RemovingFile event.
Extracting Move status messages to the FileStatus event in the same way as for the Adding

event changes.
FileComment Move file comment settings to the ZipPreprocessingFile event.
Fixing This event no longer exists because the Fix method is no longer necessary.
GlobalStatus The name and type of functionality has not changed, however you should make

sure to reimplement the event, because parameter names and types have
changed. See the GlobalStatus topic for details.

Listing Move status messages to the ListingFile event.
Newdisk Move the disk prompting dialogs or code to the InsertDisk event. Now you must

set the bDiskInserted parameter to True when the user has confirmed inserting a
disk, otherwise the process will stop with the xerInsertDiskAbort error.

PwdQuery Move "file by file" custom password dialog box code to the ZipPreprocessingFile
or UnzipPreprocessingFile events. Use the sPassword parameter to achieve the
same functionality.

Rename Move code that renames files to the ZipPreprocessingFile or
UnzipPreprocessingFile events.

Replace Move "replacing file" prompts to the ReplacingFile event. Keep in mind that you
now have more information about the source and destination files. Set the
bReplace parameter to False if you do not want a file replaced.

Move "rename file" prompts to the ZipPreprocessingFile or
UnzipPreprocessingFile events, and check the bExisting parameter to determine
if a file should be renamed or not.

SkippingFile The name and type of functionality has not changed, however you should make
sure to reimplement the event, because parameter names and types have
changed. See the SkippingFile topic for details.

Status Move file status messages and progress bar updates to the FileStatus event.
Testing Move status messages to the FileStatus event in the same way as for the Adding

event changes.
Updating Move status messages to the FileStatus event in the same way as for the Adding

event changes. Keep in mind that the ZipPreprocessingFile and the
UnzipPreprocessingFile events each have a parameter that tells you if the
destination file exists or not.

Other properties (SFX) migration

Old property Changes to note
SelfExtracting This property no longer exists. If you enter a filename in the SfxBinaryModule

property (formerly the SfxBinary property), it automatically implies SelfExtracting
= True. Leaving the SfxBinaryModule property empty implies SelfExtracting =
False.

SfxBinary Renamed to SfxBinaryModule.
SfxConfigFile Replaced by two methods called SfxSaveConfig and SfxLoadConfig that let you

save and load the current state of all the Sfx-related properties.
SfxExtractDirectory Renamed to SfxDefaultUnzipToFolder.
SfxIcon Replaced by the SfxIconFilename property. A property of type Icon cannot be

used in DCOM environments. You must now specify a filename.
SfxMessages,
SfxPrompts These two property arrays have been merged into one property array called

SfxMessages. You can use the xcdMessages enumeration to get index values.
SfxPromptCreateDirectory,
SfxPromptForDirectory,
SfxPromptForPassword,
SfxShowMessages,
SfxShowProgress These properties no longer exist. To be able to suppress one of these prompts or

dialog boxes from being shown by the self-extracting zip file, simply leave the
corresponding message in the SfxMessages property empty.

For example, if you used SfxShowProgress = False, you would now use
SfxMessages(xsmProgress) = "".

SfxOverwrite Renamed to SfxExistingFileBehavior. Use xseAsk, xseSkip and xseOverwrite
instead of xowAsk, xowNever and xowAlways.

SfxReadmePath Renamed to SfxReadmeFile.
SfxRegisterExtensions Renamed to SfxExtensionsToAssociate.
SfxRunExePath Renamed to SfxExecuteAfter.
SfxStrings The xssExtractingFile item was moved to the SfxMessages property array. You

can now use the xcdSfxStgrings enumeration for indexes.
SfxStoredExtensions This property no longer exists. If you want to change the compression method

(stored or deflated), you can now do it on a file-by-file basis when the
ZipPreprocessingFile event is triggered. Use it's xMethod parameter to control
which files are stored and which are compressed.

TempPath Renamed to TempFolder.
UsePaths Renamed to PreservePaths.
ZipComment Replaced by the ZipComment event. Use the ZipComment event's sComment

parameter to set the desired comment while zipping, removing or converting a zip
file. When unzipping or updating an existing zip file, the sComment parameter will
contain the current zip comment.

16-bit support

The Xceed Zip Compression Library offers extensive 16-bit support.
Previous versions of the Xceed Zip Compression Library included 16-bit support in the form of a 16-bit Level-1
VBX (compatible with any language that can use a 16-bit VBX, such as Visual C++ 1.52 or Visual Basic 3.0 or 4.0)
and a 16-bit Delphi 1 VCL.
These components have their own Windows help documentation, examples and samples.
Xceed Software will provide you with a 16-bit support package that contains the VBX and VCL components, free
of charge, upon request. Simply write to sales@xceedsoft.com to request your 16-bit support package.

Self-Extractor Module

If you have purchased the Self-Extractor Module, the 16-bit components will be shipped with a full-featured Self-
Extractor Module so you can create fully customized 16 and 32-bit self-extracting zip files from your 16-bit
applications.

GetErrorDescription method

Description

The GetErrorDescription method returns a text description of an xcdCompressionError enumeration member.
This method is particularly useful in order to translate an error code into english text in order to display a more
detailed error than just an error code value.
For example, to assign the description of the xceInvalidPassword (value 1004) error to a string, do this:

DescribeError = XceedCompression1.GetErrorDescription(1004);
or
DescribeError = XceedCompression1.GetErrorDescription(xceInvalidPassword);

Declaration
Method GetErrorDescription(lValue As Long) As String
Parameters

lValue
The value of the xcdCompressionError enumeration member to get a text description of.

Return values

Returns the string containing the text description. If a non-existent member value is passed in the lValue
parameter, an empty string will be returned.

